ترغب بنشر مسار تعليمي؟ اضغط هنا

White paper of the soft X-ray imaging spectroscopy

70   0   0.0 ( 0 )
 نشر من قبل Noriyuki Narukage
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar corona is full of dynamic phenomena, e.g., solar flares, micro flares in active regions, jets in coronal holes and in the polar regions, X-ray bright points in quiet regions, etc. They are accompanied by interesting physical processes, namely, magnetic reconnection, particle acceleration, shocks, waves, flows, evaporation, heating, cooling, and so on. The understandings of these phenomena and processes have been progressing step-by-step with the evolution of the observation technology in EUV and X-rays from the space. But, there are fundamental questions remain unanswered, or havent even addressed so far. Our scientific objective is to understand underlying physics of dynamic phenomena in the solar corona, covering some of the long-standing questions in solar physics such as particle acceleration in flares and coronal heating. In order to achieve these science objectives, we identify the imaging spectroscopy (the observations with spatial, temporal and energy resolutions) in the soft X-ray range (from ~0.5 keV to ~10 keV) is a powerful approach for the detection and analysis of energetic events.

قيم البحث

اقرأ أيضاً

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high re solution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISMs main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM
RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d > 750pc. Conclusions. The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated.
There is still 10-20% uncertainty on the neutron star (NS) mass-radius relation. These uncertainties could be reduced by an order of magnitude through an unambiguous measure of M/R from the surface redshift of a narrow line, greatly constraining the Equation of State for ultra-dense material. It is possible that the SXS on ASTRO-H can detect this from an accreting neutron star with low surface velocity in the line of sight i.e. either low inclination or low spin. Currently there is only one known low inclination LMXB, Ser X-1, and one known slow spin LMXB, J17480-2446 in Terzan 5. Ser X-1 is a persistent source which is always in the soft state (banana branch), where the accreting material should form a equatorial belt around the neutron star. A pole-on view should then allow the NS surface to be seen directly. A 100 ks observation should allow us to measure M/R if there are any heavy elements in the photosphere at the poles. Conversely, J17480-2446 in Terzan 5 is a transient accretion powered millisecond pulsar, where the accreting material is collimated onto the magnetic pole in the hard (island) state (L_x < 0.1 L_Edd). The hotspot where the shock illuminates the NS surface is clearly seen in this state. A 100 ks ToO observation of this (or any other similarly slow spin system) in this state, may again allow the surface redshift to be directly measured. (abstract continues)
102 - Bin Chen 2019
Magnetic reconnection is a fundamental physical process in many laboratory, space, and astrophysical plasma contexts. Solar flares serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in astrophysics. Here we emphasize the unique power of remote-sensing observations of solar flares at radio wavelengths. In particular, we discuss the transformative technique of broadband radio dynamic imaging spectroscopy in making significant contributions to addressing several outstanding challenges in magnetic reconnection, including the capability of pinpointing magnetic reconnection sites, measuring the time-evolving reconnecting magnetic fields, and deriving the spatially and temporally resolved distribution function of flare-accelerated electrons.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning pm172m{AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and Upsilon-ray spectra (this was the first Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا