ترغب بنشر مسار تعليمي؟ اضغط هنا

PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper

384   0   0.0 ( 0 )
 نشر من قبل Jacques Delabrouille
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISMs main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM



قيم البحث

اقرأ أيضاً

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.
The solar corona is full of dynamic phenomena, e.g., solar flares, micro flares in active regions, jets in coronal holes and in the polar regions, X-ray bright points in quiet regions, etc. They are accompanied by interesting physical processes, name ly, magnetic reconnection, particle acceleration, shocks, waves, flows, evaporation, heating, cooling, and so on. The understandings of these phenomena and processes have been progressing step-by-step with the evolution of the observation technology in EUV and X-rays from the space. But, there are fundamental questions remain unanswered, or havent even addressed so far. Our scientific objective is to understand underlying physics of dynamic phenomena in the solar corona, covering some of the long-standing questions in solar physics such as particle acceleration in flares and coronal heating. In order to achieve these science objectives, we identify the imaging spectroscopy (the observations with spatial, temporal and energy resolutions) in the soft X-ray range (from ~0.5 keV to ~10 keV) is a powerful approach for the detection and analysis of energetic events.
104 - P. Coppi 2014
The broad energy range spanned by ASTRO-H instruments, from ~0.3 to 600 keV, with its high spectral resolution calorimeter and sensitive hard X-ray imaging, offers unique opportunities to study black holes and their environments. The ability to measu re polarization is particularly novel, with potential sources including blazars, Galactic pulsars and X-ray binaries. In this White Paper, we present an overview of the synergistic instrumental capabilities and the improvements over prior missions. We also show how ASTRO-H fits into the multi-wavelength landscape. We present in more detail examples and simulations of key science ASTRO-H can achieve in a typical 100 ksec observation when data from all four instruments are combined. Specifically, we consider observations of black-hole source (Cyg X-1 and GRS 1915+105), blazars (Mrk 421 and Mrk 501), a quasar (3C 273), radio galaxies (Centaurus A and 3C 120), and active galaxies with a strong starburst (Circinus and NGC 4945). We will also address possible new discoveries expected from ASTRO-H.
In this white paper, we recommend the European Space Agency plays a proactive role in developing a global collaborative effort to construct a large high-contrast imaging space telescope, e.g. as currently under study by NASA. Such a mission will be n eeded to characterize a sizable sample of temperate Earth-like planets in the habitable zones of nearby Sun-like stars and to search for extraterrestrial biological activity. We provide an overview of relevant European expertise, and advocate ESA to start a technology development program towards detecting life outside the Solar system.
We examined the solar gravitational lens (SGL) as the means to produce direct high-resolution, multipixel images of exoplanets. The properties of the SGL are remarkable: it offers maximum light amplification of ~1e11 and angular resolution of ~1e-10 arcsec. A probe with a 1-m telescope in the SGL focal region can image an exoplanet at 30 pc with 10-kilometer resolution on its surface, sufficient to observe seasonal changes, oceans, continents, surface topography. We reached and exceeded all objectives set for our study: We developed a new wave-optical approach to study the imaging of exoplanets while treating them as extended, resolved, faint sources at large but finite distances. We properly accounted for the solar corona brightness. We developed deconvolution algorithms and demonstrated the feasibility of high-quality image reconstruction under realistic conditions. We have proven that multipixel imaging and spectroscopy of exoplanets with the SGL are feasible. We have developed a new mission concept that delivers an array of optical telescopes to the SGL focal region relying on three innovations: i) a new way to enable direct exoplanet imaging, ii) use of smallsats solar sails fast transit through the solar system and beyond, iii) an open architecture to take advantage of swarm technology. This approach enables entirely new missions, providing a great leap in capabilities for NASA and the greater aerospace community. Our results are encouraging as they lead to a realistic design for a mission that will be able to make direct resolved images of exoplanets in our stellar neighborhood. It could allow exploration of exoplanets relying on the SGL capabilities decades, if not centuries, earlier than possible with other extant technologies. The architecture and mission concepts for a mission to the strong interference region of the SGL are promising and should be explored further.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا