ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

132   0   0.0 ( 0 )
 نشر من قبل Iris Traulsen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d > 750pc. Conclusions. The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated.



قيم البحث

اقرأ أيضاً

Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
The POLAR detector is a space based Gamma-Ray Burst (GRB) polarimeter sensitive in the 15-500 keV energy range. Apart from its main scientific goal as a Gamma-Ray Burst polarimeter it is also able to detect photons from pulsars in orbit. By using the six-months in-orbit observation data, significant pulsation from the PSR B0531+21 (Crab pulsar) was obtained. In this work, we present the precise timing analysis of the Crab pulsar, together with a phase-resolved spectroscopic study using a joint-fitting method adapted for wide field of view instruments like POLAR. By using single power law fitting over the pulsed phase, we obtained spectral indices ranging from 1.718 to 2.315, and confirmed the spectral evolution in a reverse S shape which is homogenous with results from other missions over broadband. We will also show, based on the POLAR in-orbit performance and Geant4 Monte-Carlo simulation, the inferred capabilities of POLAR-2, the proposed follow-up mission of POLAR on board the China Space Station (CSS), for pulsars studies.
185 - Dirk Grupe 2010
We report Swift observations of a sample of 92 bright soft X-ray selected active galactic nuclei (AGN). This sample represents the largest number of AGN observed to study the spectral energy distribution (SED) of AGN with simultaneous optical/UV and X-ray data. The principal motivation of this study is to understand the SEDs of AGN in the optical/UV to X-ray regime and to provide bolometric corrections which are important in determining the Eddington ratio L/Ledd. In particular, we rigorously explore the dependence of the UV-EUV contribution to the bolometric correction on the assumed EUV spectral shape. We find strong correlations of the spectral slopes alpha-x and alpha-UV with L/Ledd. Although Narrow-Line Seyfert 1 galaxies (NLS1s) have steeper alpha-x and higher L/Ledd than Broad-Line Seyfert 1 galaxies (BLS1s), their optical/UV to X-ray spectral slopes alpha-ox and optical/UV slopes alpha-UV are very similar. The mean SED of NLS1s shows that in general this type of AGN appears to be fainter in the UV and at hard X-ray energies than BLS1s. We find a strong correlation between alpha-x and alpha-UV for AGN with X-ray spectral slopes alpha-x<1.6. For AGN with steeper X-ray spectra, both this relation and the relation between alpha-x and L/Ledd break down. At alpha-x$approx$1.6, L/Ledd reaches unity. We note an offset in the alpha-UV - L/Ledd relation between NLS1s and BLS1s. We argue that alpha-UV is a good estimator of L/Ledd and suggest that alpha-UV can be used to estimate L/Ledd in high-redshift QSOs. Although NLS1s appear to be highly variable in X-rays they only vary marginally in the UV.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected o nly from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
We present here a combined analysis of four high spectral resolution observations of the Diffuse X-ray Background (DXRB), made using the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC) sounding rocket paylo ad. The observed spectra support the existence of a $sim0.1~$keV Local Hot Bubble and a $sim0.2~$keV Hot Halo, with discrepancies between repeated observations compatible with expected contributions of time-variable emission from Solar Wind Charge Exchange (SWCX). An additional component of $sim0.9~$keV emission observed only at low galactic latitudes can be consistently explained by unresolved dM stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا