ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial Semi-Bandits with Knapsacks

174   0   0.0 ( 0 )
 نشر من قبل Karthik Abinav Sankararaman
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks (BwK) and combinatorial semi-bandits. The former concerns limited resources consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a huge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, support it with several motivating examples, and design an algorithm for it. Our regret bounds are comparable with those for BwK and combinatorial semi- bandits.



قيم البحث

اقرأ أيضاً

We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
In this paper, we study Combinatorial Semi-Bandits (CSB) that is an extension of classic Multi-Armed Bandits (MAB) under Differential Privacy (DP) and stronger Local Differential Privacy (LDP) setting. Since the server receives more information from users in CSB, it usually causes additional dependence on the dimension of data, which is a notorious side-effect for privacy preserving learning. However for CSB under two common smoothness assumptions cite{kveton2015tight,chen2016combinatorial}, we show it is possible to remove this side-effect. In detail, for $B_{infty}$-bounded smooth CSB under either $varepsilon$-LDP or $varepsilon$-DP, we prove the optimal regret bound is $Theta(frac{mB^2_{infty}ln T } {Deltaepsilon^2})$ or $tilde{Theta}(frac{mB^2_{infty}ln T} { Deltaepsilon})$ respectively, where $T$ is time period, $Delta$ is the gap of rewards and $m$ is the number of base arms, by proposing novel algorithms and matching lower bounds. For $B_1$-bounded smooth CSB under $varepsilon$-DP, we also prove the optimal regret bound is $tilde{Theta}(frac{mKB^2_1ln T} {Deltaepsilon})$ with both upper bound and lower bound, where $K$ is the maximum number of feedback in each round. All above results nearly match corresponding non-private optimal rates, which imply there is no additional price for (locally) differentially private CSB in above common settings.
Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider simple regret in BwK, which tracks algorithms performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general reduction from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from citet{AgrawalDevanur-ec14}, providing new analyses thereof.
In this paper, we consider a very general model for exploration-exploitation tradeoff which allows arbitrary concave rewards and convex constraints on the decisions across time, in addition to the customary limitation on the time horizon. This model subsumes the classic multi-armed bandit (MAB) model, and the Bandits with Knapsacks (BwK) model of Badanidiyuru et al.[2013]. We also consider an extension of this model to allow linear contexts, similar to the linear contextual extension of the MAB model. We demonstrate that a natural and simple extension of the UCB family of algorithms for MAB provides a polynomial time algorithm that has near-optimal regret guarantees for this substantially more general model, and matches the bounds provided by Badanidiyuru et al.[2013] for the special case of BwK, which is quite surprising. We also provide computationally more efficient algorithms by establishing interesting connections between this problem and other well studied problems/algorithms such as the Blackwell approachability problem, online convex optimization, and the Frank-Wolfe technique for convex optimization. We give examples of several concrete applications, where this more general model of bandits allows for richer and/or more efficient formulations of the problem.
250 - Zheng Wen , Branislav Kveton , 2014
A stochastic combinatorial semi-bandit is an online learning problem where at each step a learning agent chooses a subset of ground items subject to combinatorial constraints, and then observes stochastic weights of these items and receives their sum as a payoff. In this paper, we consider efficient learning in large-scale combinatorial semi-bandits with linear generalization, and as a solution, propose two learning algorithms called Combinatorial Linear Thompson Sampling (CombLinTS) and Combinatorial Linear UCB (CombLinUCB). Both algorithms are computationally efficient as long as the offline version of the combinatorial problem can be solved efficiently. We establish that CombLinTS and CombLinUCB are also provably statistically efficient under reasonable assumptions, by developing regret bounds that are independent of the problem scale (number of items) and sublinear in time. We also evaluate CombLinTS on a variety of problems with thousands of items. Our experiment results demonstrate that CombLinTS is scalable, robust to the choice of algorithm parameters, and significantly outperforms the best of our baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا