ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual Semantic Planning using Deep Successor Representations

134   0   0.0 ( 0 )
 نشر من قبل Yuke Zhu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial capability of real-world intelligent agents is their ability to plan a sequence of actions to achieve their goals in the visual world. In this work, we address the problem of visual semantic planning: the task of predicting a sequence of actions from visual observations that transform a dynamic environment from an initial state to a goal state. Doing so entails knowledge about objects and their affordances, as well as actions and their preconditions and effects. We propose learning these through interacting with a visual and dynamic environment. Our proposed solution involves bootstrapping reinforcement learning with imitation learning. To ensure cross task generalization, we develop a deep predictive model based on successor representations. Our experimental results show near optimal results across a wide range of tasks in the challenging THOR environment.

قيم البحث

اقرأ أيضاً

Recent work on audio-visual navigation assumes a constantly-sounding target and restricts the role of audio to signaling the targets position. We introduce semantic audio-visual navigation, where objects in the environment make sounds consistent with their semantic meaning (e.g., toilet flushing, door creaking) and acoustic events are sporadic or short in duration. We propose a transformer-based model to tackle this new semantic AudioGoal task, incorporating an inferred goal descriptor that captures both spatial and semantic properties of the target. Our models persistent multimodal memory enables it to reach the goal even long after the acoustic event stops. In support of the new task, we also expand the SoundSpaces audio simulations to provide semantically grounded sounds for an array of objects in Matterport3D. Our method strongly outperforms existing audio-visual navigation methods by learning to associate semantic, acoustic, and visual cues.
In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contra stive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. We also demonstrate significant improvements on the real-world Pouring dataset with a relative error reduction of 39.4% for motion attributes and 11.1% for static attributes compared to the single-frame baseline. Video results are available at https://sites.google.com/view/actionablerepresentations .
392 - Yi Wu , Yuxin Wu , Aviv Tamar 2019
We introduce a new memory architecture, Bayesian Relational Memory (BRM), to improve the generalization ability for semantic visual navigation agents in unseen environments, where an agent is given a semantic target to navigate towards. BRM takes the form of a probabilistic relation graph over semantic entities (e.g., room types), which allows (1) capturing the layout prior from training environments, i.e., prior knowledge, (2) estimating posterior layout at test time, i.e., memory update, and (3) efficient planning for navigation, altogether. We develop a BRM agent consisting of a BRM module for producing sub-goals and a goal-conditioned locomotion module for control. When testing in unseen environments, the BRM agent outperforms baselines that do not explicitly utilize the probabilistic relational memory structure
We propose associating language utterances to 3D visual abstractions of the scene they describe. The 3D visual abstractions are encoded as 3-dimensional visual feature maps. We infer these 3D visual scene feature maps from RGB images of the scene via view prediction: when the generated 3D scene feature map is neurally projected from a camera viewpoint, it should match the corresponding RGB image. We present generative models that condition on the dependency tree of an utterance and generate a corresponding visual 3D feature map as well as reason about its plausibility, and detector models that condition on both the dependency tree of an utterance and a related image and localize the object referents in the 3D feature map inferred from the image. Our model outperforms models of language and vision that associate language with 2D CNN activations or 2D images by a large margin in a variety of tasks, such as, classifying plausibility of utterances, detecting referential expressions, and supplying rewards for trajectory optimization of object placement policies from language instructions. We perform numerous ablations and show the improved performance of our detectors is due to its better generalization across camera viewpoints and lack of object interferences in the inferred 3D feature space, and the improved performance of our generators is due to their ability to spatially reason about objects and their configurations in 3D when mapping from language to scenes.
Mapping and localization, preferably from a small number of observations, are fundamental tasks in robotics. We address these tasks by combining spatial structure (differentiable mapping) and end-to-end learning in a novel neural network architecture : the Differentiable Mapping Network (DMN). The DMN constructs a spatially structured view-embedding map and uses it for subsequent visual localization with a particle filter. Since the DMN architecture is end-to-end differentiable, we can jointly learn the map representation and localization using gradient descent. We apply the DMN to sparse visual localization, where a robot needs to localize in a new environment with respect to a small number of images from known viewpoints. We evaluate the DMN using simulated environments and a challenging real-world Street View dataset. We find that the DMN learns effective map representations for visual localization. The benefit of spatial structure increases with larger environments, more viewpoints for mapping, and when training data is scarce. Project website: http://sites.google.com/view/differentiable-mapping

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا