ﻻ يوجد ملخص باللغة العربية
We study the dimension of the space of Whittaker functionals for depth zero representations of covering groups. In particular, we determine such dimensions for arbitrary Brylinski-Deligne coverings of the general linear group. The results in the paper are motivated by and compatible with the work of Howard and the second author, and earlier work by Blondel.
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate gro
Let G be a reductive group (over an algebraically closed field) equipped with the metaplectic data. In this paper we study the corresponding twisted Whittaker category for G. We construct and study a functor from the latter category to the correspond
In this paper we consider Iwahori Whittaker functions on $n$-fold metaplectic covers $widetilde{G}$ of $mathbf{G}(F)$ with $mathbf{G}$ a split reductive group over a non-archimedean local field $F$. For every element $phi$ of a basis of Iwahori Whitt
We show that spherical Whittaker functions on an $n$-fold cover of the general linear group arise naturally from the quantum Fock space representation of $U_q(widehat{mathfrak{sl}}(n))$ introduced by Kashiwara, Miwa and Stern (KMS). We arrive at this
The study of Whittaker models for representations of reductive groups over local and global fields has become a central tool in representation theory and the theory of automorphic forms. However, only generic representations have Whittaker models. In