ﻻ يوجد ملخص باللغة العربية
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate growth if $F=mathbb{R}$). For each nilpotent orbit $mathcal{O}$ we consider a certain Whittaker quotient $pi_{mathcal{O}}$ of $pi$. We define the Whittaker support WS$(pi)$ to be the set of maximal $mathcal{O}$ among those for which $pi_{mathcal{O}} eq 0$. In this paper we prove that all $mathcal{O}inmathrm{WS}(pi)$ are quasi-admissible nilpotent orbits, generalizing some of the results in [Moe96,JLS16]. If $F$ is $p$-adic and $pi$ is quasi-cuspidal then we show that all $mathcal{O}inmathrm{WS}(pi)$ are $F$-distinguished, i.e. do not intersect the Lie algebra of any proper Levi subgroup of $G$ defined over $F$. We also give an adaptation of our argument to automorphic representations, generalizing some results from [GRS03,Shen16,JLS16,Cai] and confirming some conjectures from [Ginz06]. Our methods are a synergy of the methods of the above-mentioned papers, and of our preceding paper [GGS17].
We study the dimension of the space of Whittaker functionals for depth zero representations of covering groups. In particular, we determine such dimensions for arbitrary Brylinski-Deligne coverings of the general linear group. The results in the pape
Let G be a reductive group (over an algebraically closed field) equipped with the metaplectic data. In this paper we study the corresponding twisted Whittaker category for G. We construct and study a functor from the latter category to the correspond
We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the
We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lus
The paper proves an identity involving Weil indices and epsilon factors for a local field. The starting point is a pair consisting of a reductive group and a maximal torus.