ﻻ يوجد ملخص باللغة العربية
The study of Whittaker models for representations of reductive groups over local and global fields has become a central tool in representation theory and the theory of automorphic forms. However, only generic representations have Whittaker models. In order to encompass other representations, one attaches a degenerate (or a generalized) Whittaker model $W_{mathcal{O}}$, or a Fourier coefficient in the global case, to any nilpotent orbit $mathcal{O}$. In this note we survey some classical and some recent work in this direction - for Archimedean, p-adic and global fields. The main results concern the existence of models. For a representation $pi$, call the set of maximal orbits $mathcal{O}$ with $W_{mathcal{O}}$ that includes $pi$ the Whittaker support of $pi$. The two main questions discussed in this note are: (1) What kind of orbits can appear in the Whittaker support of a representation? (2) How does the Whittaker support of a given representation $pi$ relate to other invariants of $pi$, such as its wave-front set?
We study generalized and degenerate Whittaker models for reductive groups over local fields of characteristic zero (archimedean or non-archimedean). Our main result is the construction of epimorphisms from the generalized Whittaker model correspondin
Let $G$ be a reductive group over a local field $F$ of characteristic zero, Archimedean or not. Let $X$ be a $G$-space. In this paper we study the existence of generalized Whittaker quotients for the space of Schwartz functions on $X$, considered as
In this paper we consider Iwahori Whittaker functions on $n$-fold metaplectic covers $widetilde{G}$ of $mathbf{G}(F)$ with $mathbf{G}$ a split reductive group over a non-archimedean local field $F$. For every element $phi$ of a basis of Iwahori Whitt
We show that spherical Whittaker functions on an $n$-fold cover of the general linear group arise naturally from the quantum Fock space representation of $U_q(widehat{mathfrak{sl}}(n))$ introduced by Kashiwara, Miwa and Stern (KMS). We arrive at this
We study the dimension of the space of Whittaker functionals for depth zero representations of covering groups. In particular, we determine such dimensions for arbitrary Brylinski-Deligne coverings of the general linear group. The results in the pape