ﻻ يوجد ملخص باللغة العربية
Targeted searches for dual active galactic nuclei (AGN), with separations 1 -- 10 kpc, have yielded relatively few successes. A recent pilot survey by Satyapal et al. has demonstrated that mid-infrared (mid-IR) pre-selection has the potential to significantly improve the success rate for dual AGN confirmation in late stage galaxy mergers. In this paper, we combine mid-IR selection with spatially resolved optical AGN diagnostics from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to identify a candidate dual AGN in the late stage major galaxy merger SDSS J140737.17+442856.2 at z=0.143. The nature of the dual AGN is confirmed with Chandra X-ray observations that identify two hard X-ray point sources with intrinsic (corrected for absorption) 2-10 keV luminosities of 4*10^41 and 3.5*10^43 erg/s separated by 8.3 kpc. The neutral hydrogen absorption (~10^22 cm^-2) towards the two AGN is lower than in duals selected solely on their mid-IR colours, indicating that strategies that combine optical and mid-IR diagnostics may complement techniques that identify the highly obscured dual phase, such as at high X-ray energies or mid-IR only.
Large-scale outflows are generally considered as a possible evidence that active galactic nuclei (AGNs) can severely affect their host galaxies. Recently an ultraluminous IR galaxy (ULIRG) at $z=0.49$, AKARI J0916248+073034, was found to have a galax
A prediction of the current paradigm of the hierarchical assembly of galaxies is the presence of supermassive dual black holes at separations of a few kpc or less. In this context, we report the detection of a narrow-line emitter within the extended
We have recently suggested that dust growth in the cold gas phase dominates the dust abundance in elliptical galaxies while dust is efficiently destroyed in the hot X-ray emitting plasma (hot gas). In order to understand the dust evolution in ellipti
Kiloparsec-scale dual active galactic nuclei (AGNs) are active supermassive black hole pairs co-rotating in galaxies with separations of less than a few kpc. Expected to be a generic outcome of hierarchical galaxy formation, their frequency and demog
Gaias milli-arcsec (mas) astrometric precision allows systematic identification of optically-selected sub-kpc dual active galactic nuclei (AGN), off-nucleus AGN, and small-scale lensed quasars by `varstrometry -- where variability-induced astrometric