ﻻ يوجد ملخص باللغة العربية
Large-scale outflows are generally considered as a possible evidence that active galactic nuclei (AGNs) can severely affect their host galaxies. Recently an ultraluminous IR galaxy (ULIRG) at $z=0.49$, AKARI J0916248+073034, was found to have a galaxy-scale [OIII] $lambda$5007 outflow with one of the highest energy-ejection rates at $z<1.6$. However, the central AGN activity estimated from its torus mid-IR (MIR) radiation is weak relative to the luminous [OIII] emission. In this work we report the first NuSTAR hard X-ray follow-up of this ULIRG to constrain its current AGN luminosity. The intrinsic 2-10 keV luminosity shows a 90% upper-limit of $3.0times10^{43}$ erg s$^{-1}$ assuming Compton-thick obscuration ($N_{rm H}=1.5times10^{24}$ cm$^{-2}$), which is only 3.6% of the luminosity expected from the extinction corrected [OIII] luminosity. With the NuSTAR observation, we succeed to identify that this ULIRG has a most extreme case of X-ray deficit among local ULIRGs. A possible scenario to explain the drastic declining in both of the corona (X-ray) and torus (MIR) is that the primary radiation from the AGN accretion disk is currently in a fading status, as a consequence of a powerful nuclear wind suggested by its powerful ionized outflow in the galaxy scale.
We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wi
Targeted searches for dual active galactic nuclei (AGN), with separations 1 -- 10 kpc, have yielded relatively few successes. A recent pilot survey by Satyapal et al. has demonstrated that mid-infrared (mid-IR) pre-selection has the potential to sign
We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the sourc
We present two NuSTAR observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton and Swift-BAT, we perform a high-quality broad
Galactic winds are associated with intense star formation and AGNs. Depending on their formation mechanism and velocity they may remove a significant fraction of gas from their host galaxies, thus suppressing star formation, enriching the intergalact