ﻻ يوجد ملخص باللغة العربية
Gaias milli-arcsec (mas) astrometric precision allows systematic identification of optically-selected sub-kpc dual active galactic nuclei (AGN), off-nucleus AGN, and small-scale lensed quasars by `varstrometry -- where variability-induced astrometric jitter, i.e., temporal displacements of photocenter in unresolved sources, can be reasonably well detected or constrained. This approach extends systematic searches for small-scale ($gtrsim$ mas) dual and off-nucleus AGN to poorly explored regime between $sim 10$ pc and $sim 1$ kpc, with Gaias full sky coverage and depth to $Gsim 21$. We outline the general principles of this method and calculate the expected astrometric signals from the full time series of photocenter measurements and light curves. We demonstrate the feasibility of varstrometry by using Gaia DR2 data on a sample of variable pre-main sequence stars with known close companions. We find that extended host galaxies have a significant impact on the accuracy of astrometric and photometric variability in Gaia DR2, a situation to be improved in future Gaia releases. Using spectroscopically confirmed SDSS quasars, we present several examples of candidate sub-kpc off-nucleus or dual AGN selected from Gaia DR2. We discuss the merits and limitations of this method and follow-up strategy for promising candidates. We highlight Gaias potential of systematically discovering and characterizing the sub-kpc off-nucleus and dual AGN population in the entire optical sky.
Off-nucleus active galactic nuclei (AGN) can be signposts of inspiraling supermassive black holes (SMBHs) on galactic scales, or accreting SMBHs recoiling after the coalescence of a SMBH binary or slingshot from three-body interactions. Because of th
Dual supermassive black holes (SMBHs) at $sim$kpc scales are the progenitor population of SMBH mergers and play an important role in understanding the pairing and dynamical evolution of massive black holes in galaxy mergers. Because of the stringent
Targeted searches for dual active galactic nuclei (AGN), with separations 1 -- 10 kpc, have yielded relatively few successes. A recent pilot survey by Satyapal et al. has demonstrated that mid-infrared (mid-IR) pre-selection has the potential to sign
The Gaia mission has opened a new window into the internal kinematics of young star clusters at the sub-km/s level, with implications for our understanding of how star clusters form and evolve. We use a sample of 28 clusters and associations with age
We make use of APOGEE and $Gaia$ data to identify stars that are consistent with being born in the same association or star cluster as the Sun. We limit our analysis to stars that match solar abundances within their uncertainties, as they could have