ﻻ يوجد ملخص باللغة العربية
We analyze the Galileon ghost condensate implementation of a bouncing cosmological model in the presence of a non negligible anisotropic stress. We exhibit its structure, which we find to be far richer than previously thought. In particular, even restricting attention to a single set of underlying microscopic parameters, we obtain, numerically, many qualitatively different regimes: depending on the initial conditions on the scalar field leading the dynamics of the universe, the contraction phase can evolve directly towards a singularity, avoid it by bouncing once, or even bounce many times before settling into an ever-expanding phase. We clarify the behavior of the anisotropies in these various situations.
We present a new class of nonsingular bounce cosmology free from instabilities, using a single scalar field coupled to gravity within the framework of the Degenerate Higher-Order Scalar-Tensor (DHOST) theories. In this type of scenarios, the gradient
Given the recent development of rotating black-bounce-Kerr spacetimes, for both theoretical and observational purposes it becomes interesting to see whether it might be possible to construct black-bounce variants of the entire Kerr-Newman family. Spe
We perform a detailed physical analysis for a class of exact solutions for the Einstein-Maxwell equations. The linear equation of state consistent with quark stars has been incorporated in the model. The physical analysis of the exact solutions is pe
In this paper, aniostropic dark energy cosmological models have been constructed in a Bianchi-V space-time with the energy momentum tensor consisting of two non-interacting fluids namely bulk viscous fluid and dark energy fluid. Two different models
It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of