ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic cosmological models with two fluids

66   0   0.0 ( 0 )
 نشر من قبل Bivudutta Mishra Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, aniostropic dark energy cosmological models have been constructed in a Bianchi-V space-time with the energy momentum tensor consisting of two non-interacting fluids namely bulk viscous fluid and dark energy fluid. Two different models are constructed based on the power law cosmology and de Sitter universe. The constructed model also embedded with different pressure gradients along different spatial directions. The variable equation of state (EoS) parameter, skewness parameters for both the models are obtained and analyzed. The physical properties of the models obtained with the use of scale factors of power law and de Sitter law are also presented.

قيم البحث

اقرأ أيضاً

It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of this phenomenon to cover the whole of the Horndeski family. We find that the phenomenon is absent in the K-essence and/or Kinetic Gravity Braiding theories, where the anisotropies grow as one approaches the singularity. The anisotropies are damped at early times only in more general Horndeski models whose Lagrangian includes terms quadratic and cubic in second derivatives of the scalar field. Such theories are often considered as being inconsistent with the observations because they predict a non-constant speed of gravitational waves. However, the predicted value of the speed at present can be close to the speed of light with any required precision, hence the theories actually agree with the present time observations. We consider two different examples of such theories, both characterized by a late self-acceleration and an early inflation driven by the non-minimal coupling. Their anisotropies show a maximum at intermediate times and approach zero at early and late times. The early inflationary stage exhibits an instability with respect to inhomogeneous perturbations, suggesting that the initial state of the universe should be inhomogeneous. However, more general Horndeski models may probably be stable.
The paper presents some exact solutions of Bianchi types I, III and Kantowski-Sachs cosmological models consisting of a dissipative fluid along with an axial magnetic field. A barytropic equation of state between the thermodynamic pressure and the ma tter density, together with a pair of linear relations between the matter density, the shear scalar, and the expansion scalar have been assumed for simplicity. The solutions are basically of two different types, one for the Bianchi-I and the other for Bianchi-III and Kantowski-Sachs type. The presence of the magnetic field, however, does not change the fundamental nature of the initial singularity.
We investigate the cosmological applications of fluids having an equation of state which is the analog to the one related to the isotropic deformation of crystalline solids, that is containing logarithmic terms of the energy density, allowing additio nally for a bulk viscosity. We consider two classes of scenarios and we show that they are both capable of triggering the transition from deceleration to acceleration at late times. Furthermore, we confront the scenarios with data from Supernovae type Ia (SN Ia) and Hubble function observations, showing that the agreement is excellent. Moreover, we perform a dynamical system analysis and we show that there exist asymptotic accelerating attractors, arisen from the logarithmic terms as well as from the viscosity, which in most cases correspond to a phantom late-time evolution. Finally, for some parameter regions we obtain a nearly de Sitter late-time attractor, which is a significant capability of the scenario since the dark energy, although dynamical, stabilizes at the cosmological constant value.
In the present work we have searched the existence of the late time acceleration of the universe with string fluid as source of matter in anisotropic Heckmann-Suchking space-time by using 287 high red shift $(0.3 leq zleq 1.4)$ SN Ia data of observed absolute magnitude along with their possible error from Union 2.1 compilation. It is found that the best fit values for $(Omega_{m})_{0}$, $(Omega_{Lambda})_{0}$, $(Omega_{sigma})_{0}$ and $(q)_{0}$ are 0.2820, 0.7177, 0.0002 $&$ -0.5793 respectively. Several physical aspects and geometrical properties of the model are discussed in detail.
In the present study we have proposed a new model of an anisotropic compact star which admits the Chaplygin equation of state. For this purpose, we consider Buchdahl ansatz. We obtain the solution of proposed model in closed form which is non-singula r, regular and well-behaved. In addition to this, we show that the model satisfies all the energy conditions and maintains the hydrostatic equilibrium equation. This model represents compact stars like PSR B0943+10, Her X-1 and SAX J1808.4-3658 to a very good approximate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا