ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating the Reach of a Manifold

113   0   0.0 ( 0 )
 نشر من قبل Eddie Aamari
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Eddie Aamari




اسأل ChatGPT حول البحث

Various problems in manifold estimation make use of a quantity called the reach, denoted by $tau_M$, which is a measure of the regularity of the manifold. This paper is the first investigation into the problem of how to estimate the reach. First, we study the geometry of the reach through an approximation perspective. We derive new geometric results on the reach for submanifolds without boundary. An estimator $hat{tau}$ of $tau_{M}$ is proposed in a framework where tangent spaces are known, and bounds assessing its efficiency are derived. In the case of i.i.d. random point cloud $mathbb{X}_{n}$, $hat{tau}(mathbb{X}_{n})$ is showed to achieve uniform expected loss bounds over a $mathcal{C}^3$-like model. Finally, we obtain upper and lower bounds on the minimax rate for estimating the reach.



قيم البحث

اقرأ أيضاً

The reach of a submanifold is a crucial regularity parameter for manifold learning and geometric inference from point clouds. This paper relates the reach of a submanifold to its convexity defect function. Using the stability properties of convexity defect functions, along with some new bounds and the recent submanifold estimator of Aamari and Levrard [Ann. Statist. 47 177-204 (2019)], an estimator for the reach is given. A uniform expected loss bound over a C^k model is found. Lower bounds for the minimax rate for estimating the reach over these models are also provided. The estimator almost achieves these rates in the C^3 and C^4 cases, with a gap given by a logarithmic factor.
The spectral gap $gamma$ of an ergodic and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed time $t$ m ay be observed. Hsu, Kontorovich, and Szepesvari (2015) considered the problem of estimating $gamma$ from this data. Let $pi$ be the stationary distribution of $P$, and $pi_star = min_x pi(x)$. They showed that, if $t = tilde{O}bigl(frac{1}{gamma^3 pi_star}bigr)$, then $gamma$ can be estimated to within multiplicative constants with high probability. They also proved that $tilde{Omega}bigl(frac{n}{gamma}bigr)$ steps are required for precise estimation of $gamma$. We show that $tilde{O}bigl(frac{1}{gamma pi_star}bigr)$ steps of the chain suffice to estimate $gamma$ up to multiplicative constants with high probability. When $pi$ is uniform, this matches (up to logarithmic corrections) the lower bound of Hsu, Kontorovich, and Szepesvari.
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights beco me so corrupted that the averaged estimate shows very poor performance. We suggest a novel computationally efficient structure-adaptive procedure which simultaneously reconstructs a smooth manifold and estimates projections of the point cloud onto this manifold. The proposed approach iteratively refines the weights on each step, using the structural information obtained at previous steps. After several iterations, we obtain nearly oracle weights, so that the final estimates are nearly efficient even in the presence of relatively large noise. In our theoretical study we establish tight lower and upper bounds proving asymptotic optimality of the method for manifold estimation under the Hausdorff loss, provided that the noise degrades to zero fast enough.
125 - Alice Le Brigant 2019
This paper studies the Fisher-Rao geometry on the parameter space of beta distributions. We derive the geodesic equations and the sectional curvature, and prove that it is negative. This leads to uniqueness for the Riemannian centroid in that space. We use this Riemannian structure to study canonical moments, an intrinsic representation of the moments of a probability distribution. Drawing on the fact that a uniform distribution in the regular moment space corresponds to a product of beta distributions in the canonical moment space, we propose a mapping from the space of canonical moments to the product beta manifold, allowing us to use the Fisher-Rao geometry of beta distributions to compare and analyze canonical moments.
Statistical methods with empirical likelihood (EL) are appealing and effective especially in conjunction with estimating equations through which useful data information can be adaptively and flexibly incorporated. It is also known in the literature t hat EL approaches encounter difficulties when dealing with problems having high-dimensional model parameters and estimating equations. To overcome the challenges, we begin our study with a careful investigation on high-dimensional EL from a new scope targeting at estimating a high-dimensional sparse model parameters. We show that the new scope provides an opportunity for relaxing the stringent requirement on the dimensionality of the model parameter. Motivated by the new scope, we then propose a new penalized EL by applying two penalty functions respectively regularizing the model parameters and the associated Lagrange multipliers in the optimizations of EL. By penalizing the Lagrange multiplier to encourage its sparsity, we show that drastic dimension reduction in the number of estimating equations can be effectively achieved without compromising the validity and consistency of the resulting estimators. Most attractively, such a reduction in dimensionality of estimating equations is actually equivalent to a selection among those high-dimensional estimating equations, resulting in a highly parsimonious and effective device for high-dimensional sparse model parameters. Allowing both the dimensionalities of model parameters and estimating equations growing exponentially with the sample size, our theory demonstrates that the estimator from our new penalized EL is sparse and consistent with asymptotically normally distributed nonzero components. Numerical simulations and a real data analysis show that the proposed penalized EL works promisingly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا