ﻻ يوجد ملخص باللغة العربية
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights become so corrupted that the averaged estimate shows very poor performance. We suggest a novel computationally efficient structure-adaptive procedure which simultaneously reconstructs a smooth manifold and estimates projections of the point cloud onto this manifold. The proposed approach iteratively refines the weights on each step, using the structural information obtained at previous steps. After several iterations, we obtain nearly oracle weights, so that the final estimates are nearly efficient even in the presence of relatively large noise. In our theoretical study we establish tight lower and upper bounds proving asymptotic optimality of the method for manifold estimation under the Hausdorff loss, provided that the noise degrades to zero fast enough.
Clustering methods seek to partition data such that elements are more similar to elements in the same cluster than to elements in different clusters. The main challenge in this task is the lack of a unified definition of a cluster, especially for hig
We study distributed estimation methods under communication constraints in a distributed version of the nonparametric random design regression model. We derive minimax lower bounds and exhibit methods that attain those bounds. Moreover, we show that adaptive estimation is possible in this setting.
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called {it needlets}. We establish a minimax result and prove its optimality. We are
We consider the problem of undirected graphical model inference. In many applications, instead of perfectly recovering the unknown graph structure, a more realistic goal is to infer some graph invariants (e.g., the maximum degree, the number of conne
We investigate whether in a distributed setting, adaptive estimation of a smooth function at the optimal rate is possible under minimal communication. It turns out that the answer depends on the risk considered and on the number of servers over which