ﻻ يوجد ملخص باللغة العربية
Simulating quantum systems constructively furthers our understanding of qualitative and quantitative features which may be analytically intractable. In this letter, we directly simulate and explore the entanglement structure present in a paradigmatic example of quantum information: Shors wavefunction. The methodology employed is a dynamical tensor network which is initially constructed as a tree tensor network, inspired by the modular exponentiation quantum circuit, and later efficiently mapped to a matrix product state. Utilizing the Schmidt number as a local entanglement metric, our construction explicitly captures the wavefunctions non-local entanglement structure and an entanglement scaling relation is discovered. Specifically, we see that entanglement across a bipartition grows exponentially in the number of qubits before saturating at a critical scale which is proportional to the modular periodicity.
Shors algorithm is examined critically from the standpoint of its eventual use to obtain the factors of large integers.
We show how the execution time of algorithms on quantum computers depends on the architecture of the quantum computer, the choice of algorithms (including subroutines such as arithmetic), and the ``clock speed of the quantum computer. The primary arc
We describe a quantum-assisted machine learning (QAML) method in which multivariate data is encoded into quantum states in a Hilbert space whose dimension is exponentially large in the length of the data vector. Learning in this space occurs through
We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our cust
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shors algorithm for factoring large numbers: