ﻻ يوجد ملخص باللغة العربية
We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our custom CAD flow produces detailed layouts of the physical components and utilizes simulation to analyze circuits in terms of area, latency, and success probability. We introduce a metric, called ADCR, which is the probabilistic equivalent of the classic Area-Delay product. Our error correction optimization can reduce ADCR by an order of magnitude or more. Contrary to conventional wisdom, we show that the area of an optimized quantum circuit is not dominated exclusively by error correction. Further, our adder evaluation shows that quantum carry-lookahead adders (QCLA) beat ripple-carry adders in ADCR, despite being larger and more complex. We conclude with what we believe is one of most accurate estimates of the area and latency required for 1024-bit Shors factorization: 7659 mm$^{2}$ for the smallest circuit and $6 * 10^8$ seconds for the fastest circuit.
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shors algorithm for factoring large numbers:
Quantum information processing and its associated technologies has reached an interesting and timely stage in their development where many different experiments have been performed establishing the basic building blocks. The challenge moving forward
We study the results of a compiled version of Shors factoring algorithm on the ibmqx5 superconducting chip, for the particular case of $N=15$, $21$ and $35$. The semi-classical quantum Fourier transform is used to implement the algorithm with only a
We report a proof-of-concept demonstration of a quantum order-finding algorithm for factoring the integer 21. Our demonstration involves the use of a compiled version of the quantum phase estimation routine, and builds upon a previous demonstration b
Quantum computation promises significant computational advantages over classical computation for some problems. However, quantum hardware suffers from much higher error rates than in classical hardware. As a result, extensive quantum error correction