ﻻ يوجد ملخص باللغة العربية
We describe a quantum-assisted machine learning (QAML) method in which multivariate data is encoded into quantum states in a Hilbert space whose dimension is exponentially large in the length of the data vector. Learning in this space occurs through applying a low-depth quantum circuit with a tree tensor network (TTN) topology, which acts as an unsupervised feature extractor to identify the most relevant quantum states in a data-driven fashion. This unsupervised feature extractor then feeds a supervised linear classifier and encodes the output in a small-dimensional quantum register. In contrast to previous work on emph{quantum-inspired} TTN classifiers, in which the embedding map and class decision weights did not map the data to well-defined quantum states, we present an approach that can be implemented on gate-based quantum computing devices. In particular, we identify an embedding map with accuracy similar to exponential machines (Novikov emph{et al.}, arXiv:1605.03795), but which produces valid quantum states from classical data vectors, and utilize manifold-based gradient optimization schemes to produce isometric operations mapping quantum states to a register of qubits defining a class decision. We detail methods for efficiently obtaining one- and two-point correlation functions of the decision boundary vectors of the quantum model, which can be used for model interpretability, as well as methods for obtaining classifications from partial data vectors. Further, we show that the use of isometric tensors can significantly aid in the human interpretability of the correlation functions extracted from the decision weights, and may produce models that are less susceptible to adversarial perturbations. We demonstrate our methodologies in applications utilizing the MNIST handwritten digit dataset and a multivariate timeseries dataset of human activity recognition.
We show how to learn structures of generic, non-Markovian, quantum stochastic processes using a tensor network based machine learning algorithm. We do this by representing the process as a matrix product operator (MPO) and train it with a database of
The numerical simulation of quantum circuits is an indispensable tool for development, verification and validation of hybrid quantum-classical algorithms on near-term quantum co-processors. The emergence of exascale high-performance computing (HPC) p
With quantum computing technologies nearing the era of commercialization and quantum supremacy, machine learning (ML) appears as one of the promising killer applications. Despite significant effort, there has been a disconnect between most quantum ML
Tensor networks have emerged as promising tools for machine learning, inspired by their widespread use as variational ansatzes in quantum many-body physics. It is well known that the success of a given tensor network ansatz depends in part on how wel
Quantum simulators and processors are rapidly improving nowadays, but they are still not able to solve complex and multidimensional tasks of practical value. However, certain numerical algorithms inspired by the physics of real quantum devices prove