ﻻ يوجد ملخص باللغة العربية
We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other banks, possibly triggering a cascade of defaults. The strength of this interaction is determined by the level of the so-called non-core exposure. We show that, when the size of the system becomes large, the cumulative loss process of a bank resulting from the defaults of other banks exhibits discontinuities. These discontinuities are naturally interpreted as systemic events, and we characterize them explicitly in terms of the level of non-core exposure and the fraction of banks that are about to default. The main mathematical challenges of our work stem from the very singular nature of the interaction between the particles, which is inherited by the limiting system. A similar particle system is analyzed in [DIRT15a] and [DIRT15b], and we build on and extend their results. In particular, we characterize the large-population limit of the system and analyze the jump times, the regularity between jumps, and the local uniqueness of the limiting process.
Building on the line of work [DIRT15a], [DIRT15b], [NS17a], [DT17], [HLS18], [HS18] we continue the study of particle systems with singular interaction through hitting times. In contrast to the previous research, we (i) consider very general driving
We consider the asymptotic behavior of the fluctuations for the empirical measures of interacting particle systems with singular kernels. We prove that the sequence of fluctuation processes converges in distribution to a generalized Ornstein-Uhlenbec
We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such S
We present a simple uniqueness argument for a collection of McKean-Vlasov problems that have seen recent interest. Our first result shows that, in the weak feedback regime, there is global uniqueness for a very general class of random drivers. By wea
We consider moderately interacting particle systems with singular interaction kernel and environmental noise. It is shown that the mollified empirical measures converge in strong norms to the unique (local) solutions of nonlinear Fokker-Planck equati