ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverting the Markovian projection, with an application to local stochastic volatility models

195   0   0.0 ( 0 )
 نشر من قبل Daniel Lacker
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such SDEs arise when one tries to invert the Markovian projection developed by Gyongy (1986), typically to produce an It^o process with the fixed-time marginal distributions of a given one-dimensional diffusion but richer dynamical features. We prove the strong existence of stationary solutions for these SDEs, as well as their strong uniqueness in an important special case. Variants of the SDEs discussed in this paper enjoy frequent application in the calibration of local stochastic volatility models in finance, despite the very limited theoretical understanding.

قيم البحث

اقرأ أيضاً

This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the relat ed collocated local volatility model (CLV) are explored. Finally, a simple analytical expression for the Dupire local volatility derived from the option prices modelled by stochastic collocation is given.
We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other b anks, possibly triggering a cascade of defaults. The strength of this interaction is determined by the level of the so-called non-core exposure. We show that, when the size of the system becomes large, the cumulative loss process of a bank resulting from the defaults of other banks exhibits discontinuities. These discontinuities are naturally interpreted as systemic events, and we characterize them explicitly in terms of the level of non-core exposure and the fraction of banks that are about to default. The main mathematical challenges of our work stem from the very singular nature of the interaction between the particles, which is inherited by the limiting system. A similar particle system is analyzed in [DIRT15a] and [DIRT15b], and we build on and extend their results. In particular, we characterize the large-population limit of the system and analyze the jump times, the regularity between jumps, and the local uniqueness of the limiting process.
We study the dependence of mild solutions to linear stochastic evolution equations on Hilbert space driven by Wiener noise, with drift having linear part of the type $A+varepsilon G$, on the parameter $varepsilon$. In particular, we study the limit a nd the asymptotic expansions in powers of $varepsilon$ of these solutions, as well as of functionals thereof, as $varepsilon to 0$, with good control on the remainder. These convergence and series expansion results are then applied to a parabolic perturbation of the Musiela SPDE of mathematical finance modeling the dynamics of forward rates.
We consider systems of diffusion processes (particles) interacting through their ranks (also referred to as rank-based models in the mathematical finance literature). We show that, as the number of particles becomes large, the process of fluctuations of the empirical cumulative distribution functions converges to the solution of a linear parabolic SPDE with additive noise. The coefficients in the limiting SPDE are determined by the hydrodynamic limit of the particle system which, in turn, can be described by the porous medium PDE. The result opens the door to a thorough investigation of large equity markets and investment therein. In the course of the proof we also derive quantitative propagation of chaos estimates for the particle system.
Stochastic volatility models based on Gaussian processes, like fractional Brownian motion, are able to reproduce important stylized facts of financial markets such as rich autocorrelation structures, persistence and roughness of sample paths. This is made possible by virtue of the flexibility introduced in the choice of the covariance function of the Gaussian process. The price to pay is that, in general, such models are no longer Markovian nor semimartingales, which limits their practical use. We derive, in two different ways, an explicit analytic expression for the joint characteristic function of the log-price and its integrated variance in general Gaussian stochastic volatility models. Such analytic expression can be approximated by closed form matrix expressions. This opens the door to fast approximation of the joint density and pricing of derivatives on both the stock and its realized variance using Fourier inversion techniques. In the context of rough volatility modeling, our results apply to the (rough) fractional Stein--Stein model and provide the first analytic formulae for option pricing known to date, generalizing that of Stein--Stein, Sch{o}bel-Zhu and a special case of Heston.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا