ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean field systems on networks, with singular interaction through hitting times

73   0   0.0 ( 0 )
 نشر من قبل Mykhaylo Shkolnikov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Building on the line of work [DIRT15a], [DIRT15b], [NS17a], [DT17], [HLS18], [HS18] we continue the study of particle systems with singular interaction through hitting times. In contrast to the previous research, we (i) consider very general driving processes and interaction functions, (ii) allow for inhomogeneous connection structures, and (iii) analyze a game in which the particles determine their connections strategically. Hereby, we uncover two completely new phenomena. First, we characterize the times of fragility of such systems (e.g., the times when a macroscopic part of the population defaults or gets infected simultaneously, or when the neuron cells synchronize) explicitly in terms of the dynamics of the driving processes, the current distribution of the particles values, and the topology of the underlying network (represented by its Perron-Frobenius eigenvalue). Second, we use such systems to describe a dynamic credit-network game and show that, in equilibrium, the system regularizes: i.e., the times of fragility never occur, as the particles avoid them by adjusting their connections strategically. Two auxiliary mathematical results, useful in their own right, are uncovered during our investigation: a generalization of Schauders fixed-point theorem for the Skorokhod space with the M1 topology, and the application of the max-plus algebra to the equilibrium version of the network flow problem.



قيم البحث

اقرأ أيضاً

We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other b anks, possibly triggering a cascade of defaults. The strength of this interaction is determined by the level of the so-called non-core exposure. We show that, when the size of the system becomes large, the cumulative loss process of a bank resulting from the defaults of other banks exhibits discontinuities. These discontinuities are naturally interpreted as systemic events, and we characterize them explicitly in terms of the level of non-core exposure and the fraction of banks that are about to default. The main mathematical challenges of our work stem from the very singular nature of the interaction between the particles, which is inherited by the limiting system. A similar particle system is analyzed in [DIRT15a] and [DIRT15b], and we build on and extend their results. In particular, we characterize the large-population limit of the system and analyze the jump times, the regularity between jumps, and the local uniqueness of the limiting process.
We generalize the notion of strong stationary time and we give a representation formula for the hitting time to a target set in the general case of non-reversible Markov processes.
We consider the asymptotic behavior of the fluctuations for the empirical measures of interacting particle systems with singular kernels. We prove that the sequence of fluctuation processes converges in distribution to a generalized Ornstein-Uhlenbec k process. Our result considerably extends classical results to singular kernels, including the Biot-Savart law. The result applies to the point vortex model approximating the 2D incompressible Navier-Stokes equation and the 2D Euler equation. We also obtain Gaussianity and optimal regularity of the limiting Ornstein-Uhlenbeck process. The method relies on the martingale approach and the Donsker-Varadhan variational formula, which transfers the uniform estimate to some exponential integrals. Estimation of those exponential integrals follows by cancellations and combinatorics techniques and is of the type of large deviation principle.
103 - F.Manzo , E.Scoppola 2018
In the setting of non-reversible Markov chains on finite or countable state space, exact results on the distribution of the first hitting time to a given set $G$ are obtained. A new notion of strong metastability time is introduced to describe the lo cal relaxation time. This time is defined via a generalization of the strong stationary time to a conditionally strong quasi-stationary time(CSQST). Rarity of the target set $G$ is not required and the initial distribution can be completely general. The results clarify the the role played by the initial distribution on the exponential law; they are used to give a general notion of metastability and to discuss the relation between the exponential distribution of the first hitting time and metastability.
For the last ten years, almost every theoretical result concerning the expected run time of a randomized search heuristic used drift theory, making it the arguably most important tool in this domain. Its success is due to its ease of use and its powe rful result: drift theory allows the user to derive bounds on the expected first-hitting time of a random process by bounding expected local changes of the process -- the drift. This is usually far easier than bounding the expected first-hitting time directly. Due to the widespread use of drift theory, it is of utmost importance to have the best drift theorems possible. We improve the fundamental additive, multiplicative, and variable drift theorems by stating them in a form as general as possible and providing examples of why the restrictions we keep are still necessary. Our additive drift theorem for upper bounds only requires the process to be nonnegative, that is, we remove unnecessary restrictions like a finite, discrete, or bounded search space. As corollaries, the same is true for our upper bounds in the case of variable and multiplicative drift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا