ﻻ يوجد ملخص باللغة العربية
This paper aims to address two issues existing in the current speech enhancement methods: 1) the difficulty of phase estimations; 2) a single objective function cannot consider multiple metrics simultaneously. To solve the first problem, we propose a novel convolutional neural network (CNN) model for complex spectrogram enhancement, namely estimating clean real and imaginary (RI) spectrograms from noisy ones. The reconstructed RI spectrograms are directly used to synthesize enhanced speech waveforms. In addition, since log-power spectrogram (LPS) can be represented as a function of RI spectrograms, its reconstruction is also considered as another target. Thus a unified objective function, which combines these two targets (reconstruction of RI spectrograms and LPS), is equivalent to simultaneously optimizing two commonly used objective metrics: segmental signal-to-noise ratio (SSNR) and logspectral distortion (LSD). Therefore, the learning process is called multi-metrics learning (MML). Experimental results confirm the effectiveness of the proposed CNN with RI spectrograms and MML in terms of improved standardized evaluation metrics on a speech enhancement task.
Speech enhancement model is used to map a noisy speech to a clean speech. In the training stage, an objective function is often adopted to optimize the model parameters. However, in most studies, there is an inconsistency between the model optimizati
This study proposes a fully convolutional network (FCN) model for raw waveform-based speech enhancement. The proposed system performs speech enhancement in an end-to-end (i.e., waveform-in and waveform-out) manner, which dif-fers from most existing d
We propose the multi-head convolutional neural network (MCNN) architecture for waveform synthesis from spectrograms. Nonlinear interpolation in MCNN is employed with transposed convolution layers in parallel heads. MCNN achieves more than an order of
Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be eff
Cover song identification represents a challenging task in the field of Music Information Retrieval (MIR) due to complex musical variations between query tracks and cov