ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Spectrogram Inversion using Multi-head Convolutional Neural Networks

128   0   0.0 ( 0 )
 نشر من قبل Sercan Arik
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the multi-head convolutional neural network (MCNN) architecture for waveform synthesis from spectrograms. Nonlinear interpolation in MCNN is employed with transposed convolution layers in parallel heads. MCNN achieves more than an order of magnitude higher compute intensity than commonly-used iterative algorithms like Griffin-Lim, yielding efficient utilization for modern multi-core processors, and very fast (more than 300x real-time) waveform synthesis. For training of MCNN, we use a large-scale speech recognition dataset and losses defined on waveforms that are related to perceptual audio quality. We demonstrate that MCNN constitutes a very promising approach for high-quality speech synthesis, without any iterative algorithms or autoregression in computations.

قيم البحث

اقرأ أيضاً

Converting time domain waveforms to frequency domain spectrograms is typically considered to be a prepossessing step done before model training. This approach, however, has several drawbacks. First, it takes a lot of hard disk space to store differen t frequency domain representations. This is especially true during the model development and tuning process, when exploring various types of spectrograms for optimal performance. Second, if another dataset is used, one must process all the audio clips again before the network can be retrained. In this paper, we integrate the time domain to frequency domain conversion as part of the model structure, and propose a neural network based toolbox, nnAudio, which leverages 1D convolutional neural networks to perform time domain to frequency domain conversion during feed-forward. It allows on-the-fly spectrogram generation without the need to store any spectrograms on the disk. This approach also allows back-propagation on the waveforms-to-spectrograms transformation layer, which implies that this transformation process can be made trainable, and hence further optimized by gradient descent. nnAudio reduces the waveforms-to-spectrograms conversion time for 1,770 waveforms (from the MAPS dataset) from $10.64$ seconds with librosa to only $0.001$ seconds for Short-Time Fourier Transform (STFT), $18.3$ seconds to $0.015$ seconds for Mel spectrogram, $103.4$ seconds to $0.258$ for constant-Q transform (CQT), when using GPU on our DGX work station with CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz Tesla v100 32Gb GPUs. (Only 1 GPU is being used for all the experiments.) We also further optimize the existing CQT algorithm, so that the CQT spectrogram can be obtained without aliasing in a much faster computation time (from $0.258$ seconds to only $0.001$ seconds).
The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music information retrieval. We present a novel method to detect such diffe rences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data. We conduct experiments on audio recordings of real performances that differ structurally from the score, and our results demonstrate that our models outperform standard methods for structure-aware audio-to-score alignment.
We previously established a large lung sound database, HF_Lung_V2 (Lung_V2). We trained convolutional-bidirectional gated recurrent unit (CNN-BiGRU) networks for detecting inhalation, exhalation, continuous adventitious sound (CAS) and discontinuous adventitious sound at the recording level on the basis of Lung_V2. However, the performance of CAS detection was poor due to many reasons, one of which is the highly diversified CAS patterns. To make the original CNN-BiGRU model learn the CAS patterns more effectively and not cause too much computing burden, three strategies involving minimal modifications of the network architecture of the CNN layers were investigated: (1) making the CNN layers a bit deeper by using the residual blocks, (2) making the CNN layers a bit wider by increasing the number of CNN kernels, and (3) separating the feature input into multiple paths (the model was denoted by Multi-path CNN-BiGRU). The performance of CAS segment and event detection were evaluated. Results showed that improvement in CAS detection was observed among all the proposed architecture-modified models. The F1 score for CAS event detection of the proposed models increased from 0.445 to 0.491-0.530, which was deemed significant. However, the Multi-path CNN-BiGRU model outperformed the other models in terms of the number of winning titles (five) in total nine evaluation metrics. In addition, the Multi-path CNN-BiGRU model did not cause extra computing burden (0.97-fold inference time) compared to the original CNN-BiGRU model. Conclusively, the Multi-path CNN layers can efficiently improve the effectiveness of feature extraction and subsequently result in better CAS detection.
We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the A UC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows state-of-the-art performance with mel-spectrogram input. Furthermore, we evaluated the performances of the architectures with varying the number of layers on a larger dataset (Million Song Dataset), and found that deeper models outperformed the 4-layer architecture. The experiments show that mel-spectrogram is an effective time-frequency representation for automatic tagging and that more complex models benefit from more training data.
This paper proposes a serialized multi-layer multi-head attention for neural speaker embedding in text-independent speaker verification. In prior works, frame-level features from one layer are aggregated to form an utterance-level representation. Ins pired by the Transformer network, our proposed method utilizes the hierarchical architecture of stacked self-attention mechanisms to derive refined features that are more correlated with speakers. Serialized attention mechanism contains a stack of self-attention modules to create fixed-dimensional representations of speakers. Instead of utilizing multi-head attention in parallel, the proposed serialized multi-layer multi-head attention is designed to aggregate and propagate attentive statistics from one layer to the next in a serialized manner. In addition, we employ an input-aware query for each utterance with the statistics pooling. With more layers stacked, the neural network can learn more discriminative speaker embeddings. Experiment results on VoxCeleb1 dataset and SITW dataset show that our proposed method outperforms other baseline methods, including x-vectors and other x-vectors + conventional attentive pooling approaches by 9.7% in EER and 8.1% in DCF0.01.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا