ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of the Milky Way halo and its dwarf satellites, a NLTE-1D abundance analysis. I. Homogeneous set of atmospheric parameters

68   0   0.0 ( 0 )
 نشر من قبل Lyudmila Mashonkina
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bootes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4 < [Fe/H] < -1.7 metallicity range. We show that, in the [Fe/H] > -3.5 regime, the non-local thermodynamic equilibrium (NLTE) calculations with non-spectroscopic effective temperature (Teff) and surface gravity (log~g) based on the photometric methods and known distance provide consistent abundances of the Fe I and Fe II lines. This justifies the Fe I/Fe II ionisation equilibrium method to determine log g for the MW halo giants with unknown distance. The atmospheric parameters of the dSphs and MW stars were checked with independent methods. In the [Fe/H] > -3.5 regime, the Ti I/Ti II ionisation equilibrium is fulfilled in the NLTE calculations. In the log~g - Teff plane, all the stars sit on the giant branch of the evolutionary tracks corresponding to [Fe/H] = -2 to -4, in line with their metallicities. For some of the most metal-poor stars of our sample, we hardly achieve consistent NLTE abundances from the two ionisation stages for both iron and titanium. We suggest that this is a consequence of the uncertainty in the Teff-colour relation at those metallicities. The results of these work provide the base for a detailed abundance analysis presented in a companion paper.


قيم البحث

اقرأ أيضاً

We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 < [Fe/H] < -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results a re based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in PaperI. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [alpha/Fe] ~ 0.3 for each of the alpha-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in alpha/Fe with increasing metallicity in the BootesI ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its production is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs: BootesI, UMaII, and LeoIV are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ~ -1.3 and [Ba/Mg] ~ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Bootes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.
We present atmospheric parameters and abundances for chemical elements from carbon to barium in metal-poor stars in Segue 1 (seven stars), Coma Berenices (three stars), and Triangulum II (one star) ultra-faint dwarf galaxies (UFDs). The effective tem peratures rely on new photometric observations in the visible and infra-red bands, obtained with the 2.5 m telescope of the SAI MSU Caucasian observatory. Abundances of up to fourteen chemical elements were derived under the non-local thermodynamic equilibrium (NLTE) line formation, and LTE abundances were obtained for up to five more elements. For the first time we present abundance of oxygen in Seg 1 S1 and S4, silicon in ComaBer S2 and Tri II S40, potassium in Seg 1 S1-S6 and ComaBer S1-S3, and barium in Seg 1 S7. Three stars in Segue 1, two stars in Coma Berenices, and Triangulum II star have very low [Na/Mg] of -1.08 to -1.67 dex, which is usually attributed in the literature to an odd-even effect produced by nucleosynthesis in massive metal-free stars. We interpret this chemical property as a footprint of first stars, which is not blurred due to a small number of nucleosynthesis events that contributed to chemical abundance patterns of the sample stars. Our NLTE abundances of Sr and Ba in Coma Berenices, Segue 1, and Triangulum II report on lower [Sr/Ba] abundance ratio in the UFDs compared to that in classical dwarf spheroidal galaxies and the Milky Way halo. However, in UFDs, just as in massive galaxies, [Sr/Ba] is not constant and it can be higher than the pure r-process ratio. We suggest a hypothesis of Sr production in metal-poor binaries at the earliest epoch of galactic evolution.
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., this issue). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 micron) simultaneously. A high-resolution (R~19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements.
85 - Jun Hou 2014
In this paper, we study the chemical properties of the stars in the dwarf satellites around the MW-like host galaxies, and explore the possible effects of several baryonic processes, including supernova (SN) feedback, the reionization of the universe and H$_2$ cooling, on them and how current and future observations may put some constraints on these processes. We use a semi-analytical model to generate MW-like galaxies, for which a fiducial model can reproduce the luminosity function and the stellar metallicity--stellar mass correlation of the MW dwarfs. Using the simulated MW-like galaxies, we focus on investigating three metallicity properties of their dwarfs: the stellar metallicity--stellar mass correlation of the dwarf population, and the metal-poor and metal-rich tails of the stellar metallicity distribution in individual dwarfs. We find that (1) the slope of the stellar metallicity--stellar mass correlation is sensitive to the SN feedback strength and the reionization epoch; (2) the extension of the metal-rich tails is mainly sensitive to the SN feedback strength; (3) the extension of the metal-poor tails is mainly sensitive to the reionization epoch; (4) none of the three chemical properties are sensitive to the H$_2$ cooling process; and (5) comparison of our model results with the current observational slope of the stellar metallicity--stellar mass relation suggests that the local universe is reionized earlier than the cosmic average and local sources may have a significant contribution to the reionization in the local region, and an intermediate to strong SN feedback strength is preferred. Future observations of metal-rich and metal-poor tails of stellar metallicity distributions will put further constraints on the SN feedback and the reionization processes.
A small fraction of thermalized dark radiation that transitions into cold dark matter (CDM) between big bang nucleosynthesis and matter-radiation equality can account for the entire dark matter relic density. Because of its transition from dark radia tion, late-forming dark matter (LFDM) suppresses the growth of linear matter perturbations and imprints the oscillatory signatures of dark radiation perturbations on small scales. The cutoff scale in the linear matter power spectrum is set by the redshift $z_T$ of the phase transition; tracers of small-scale structure can therefore be used to infer the LFDM formation epoch. Here, we use a forward model of the Milky Way (MW) satellite galaxy population to address the question: How late can dark matter form? For dark radiation with strong self-interactions, which arises in theories of neutrinolike LFDM, we report $z_{T}>5.5times 10^6$ at $95%$ confidence based on the abundance of known MW satellite galaxies. This limit rigorously accounts for observational incompleteness corrections, marginalizes over uncertainties in the connection between dwarf galaxies and dark matter halos, and improves upon galaxy clustering and Lyman-$alpha$ forest constraints by nearly an order of magnitude. We show that this limit can also be interpreted as a lower bound on $z_T$ for LFDM that free-streams prior to its phase transition, although dedicated simulations will be needed to analyze this case in detail. Thus, dark matter created by a transition from dark radiation must form no later than one week after the big bang.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا