ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. II. Early chemical enrichment

76   0   0.0 ( 0 )
 نشر من قبل Lyudmila Mashonkina
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 < [Fe/H] < -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results are based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in PaperI. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [alpha/Fe] ~ 0.3 for each of the alpha-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in alpha/Fe with increasing metallicity in the BootesI ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its production is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs: BootesI, UMaII, and LeoIV are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ~ -1.3 and [Ba/Mg] ~ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Bootes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.



قيم البحث

اقرأ أيضاً

We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bootes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4 < [Fe/H] < -1.7 metallicity range. We show that, in the [Fe/H] > -3.5 regime, the non-local thermodynamic equilibrium (NLTE) calculations with non-spectroscopic effective temperature (Teff) and surface gravity (log~g) based on the photometric methods and known distance provide consistent abundances of the Fe I and Fe II lines. This justifies the Fe I/Fe II ionisation equilibrium method to determine log g for the MW halo giants with unknown distance. The atmospheric parameters of the dSphs and MW stars were checked with independent methods. In the [Fe/H] > -3.5 regime, the Ti I/Ti II ionisation equilibrium is fulfilled in the NLTE calculations. In the log~g - Teff plane, all the stars sit on the giant branch of the evolutionary tracks corresponding to [Fe/H] = -2 to -4, in line with their metallicities. For some of the most metal-poor stars of our sample, we hardly achieve consistent NLTE abundances from the two ionisation stages for both iron and titanium. We suggest that this is a consequence of the uncertainty in the Teff-colour relation at those metallicities. The results of these work provide the base for a detailed abundance analysis presented in a companion paper.
We present atmospheric parameters and abundances for chemical elements from carbon to barium in metal-poor stars in Segue 1 (seven stars), Coma Berenices (three stars), and Triangulum II (one star) ultra-faint dwarf galaxies (UFDs). The effective tem peratures rely on new photometric observations in the visible and infra-red bands, obtained with the 2.5 m telescope of the SAI MSU Caucasian observatory. Abundances of up to fourteen chemical elements were derived under the non-local thermodynamic equilibrium (NLTE) line formation, and LTE abundances were obtained for up to five more elements. For the first time we present abundance of oxygen in Seg 1 S1 and S4, silicon in ComaBer S2 and Tri II S40, potassium in Seg 1 S1-S6 and ComaBer S1-S3, and barium in Seg 1 S7. Three stars in Segue 1, two stars in Coma Berenices, and Triangulum II star have very low [Na/Mg] of -1.08 to -1.67 dex, which is usually attributed in the literature to an odd-even effect produced by nucleosynthesis in massive metal-free stars. We interpret this chemical property as a footprint of first stars, which is not blurred due to a small number of nucleosynthesis events that contributed to chemical abundance patterns of the sample stars. Our NLTE abundances of Sr and Ba in Coma Berenices, Segue 1, and Triangulum II report on lower [Sr/Ba] abundance ratio in the UFDs compared to that in classical dwarf spheroidal galaxies and the Milky Way halo. However, in UFDs, just as in massive galaxies, [Sr/Ba] is not constant and it can be higher than the pure r-process ratio. We suggest a hypothesis of Sr production in metal-poor binaries at the earliest epoch of galactic evolution.
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magel lanic Clouds (LMC/SMC), the Sagittarius Dwarf (Sgr), Fornax (Fnx), and the now fully disrupted emph{Gaia} Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [$alpha$/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the MCs observed by Nidever et al. in the $alpha$-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier ($sim$~5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
129 - David M. Nataf 2015
The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies som e substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxys oldest stars for [Fe/H]$lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$lesssim0$ are older than $t approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., this issue). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 micron) simultaneously. A high-resolution (R~19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا