ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing baryonic processes and gastrophysics in the formation of the Milky Way dwarf satellites: I. metallicity distribution properties

108   0   0.0 ( 0 )
 نشر من قبل Qingjuan Yu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jun Hou




اسأل ChatGPT حول البحث

In this paper, we study the chemical properties of the stars in the dwarf satellites around the MW-like host galaxies, and explore the possible effects of several baryonic processes, including supernova (SN) feedback, the reionization of the universe and H$_2$ cooling, on them and how current and future observations may put some constraints on these processes. We use a semi-analytical model to generate MW-like galaxies, for which a fiducial model can reproduce the luminosity function and the stellar metallicity--stellar mass correlation of the MW dwarfs. Using the simulated MW-like galaxies, we focus on investigating three metallicity properties of their dwarfs: the stellar metallicity--stellar mass correlation of the dwarf population, and the metal-poor and metal-rich tails of the stellar metallicity distribution in individual dwarfs. We find that (1) the slope of the stellar metallicity--stellar mass correlation is sensitive to the SN feedback strength and the reionization epoch; (2) the extension of the metal-rich tails is mainly sensitive to the SN feedback strength; (3) the extension of the metal-poor tails is mainly sensitive to the reionization epoch; (4) none of the three chemical properties are sensitive to the H$_2$ cooling process; and (5) comparison of our model results with the current observational slope of the stellar metallicity--stellar mass relation suggests that the local universe is reionized earlier than the cosmic average and local sources may have a significant contribution to the reionization in the local region, and an intermediate to strong SN feedback strength is preferred. Future observations of metal-rich and metal-poor tails of stellar metallicity distributions will put further constraints on the SN feedback and the reionization processes.



قيم البحث

اقرأ أيضاً

98 - Mark R. Lovell 2021
The spatial distribution of Milky Way (MW) subhaloes provides an important set of observables for testing cosmological models. These include the radial distribution of luminous satellites, planar configurations, and the abundance of dark subhaloes wh ose existence or absence is key to distinguishing amongst dark matter models. We use the COCO $N$-body simulations of cold dark matter (CDM) and 3.3keV thermal relic warm dark matter (WDM) to predict the satellite spatial distribution. We demonstrate that the radial distributions of CDM and 3.3keV-WDM luminous satellites are identical if the minimum pre-infall halo mass to form a galaxy is $>10^{8.5}$$mathrm{M}_{odot}$ The distribution of dark subhaloes is significantly more concentrated in WDM due to the absence of low mass, recently accreted substructures that typically inhabit the outer parts of a MW halo in CDM. We show that subhaloes of mass $[10^{7},10^{8}]$$mathrm{M}_{odot}$ and within 30kpc of the centre are the stripped remnants of larger haloes in both models. Therefore their abundance in WDM is $3times$ higher than one would anticipate from the overall WDM subhalo population. We estimate that differences between CDM and WDM concentration--mass relations can be probed for subhalo--stream impact parameters $<2$kpc. Finally, we find that the impact of WDM on planes of satellites is likely negligible. Precise predictions will require further work with high resolution, self-consistent hydrodynamical simulations.
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semi-analytic model is based on that developed for the Millennium Simul ation, and successfully reproduces the properties of galaxies on large scales, as well as those of the Milky Way. In this model, we are able to reproduce the luminosity function of the satellites around the Milky Way by preventing cooling in haloes with Vvir < 16.7 km/s (i.e. the atomic hydrogen cooling limit) and including the impact of the reionization of the Universe. The physical properties of our model satellites (e.g. mean metallicities, ages, half-light radii and mass-to-light ratios) are in good agreement with the latest observational measurements. We do not find a strong dependence upon the particular implementation of supernova feedback, but a scheme which is more efficient in galaxies embedded in smaller haloes, i.e. shallower potential wells, gives better agreement with the properties of the ultra-faint satellites. Our model predicts that the brightest satellites are associated with the most massive subhaloes, are accreted later (z $lta$ 1), and have extended star formation histories, with only 1 per cent of their stars made by the end of the reionization. On the other hand, the faintest satellites were accreted early, are dominated by stars with age > 10 Gyr, and a few of them formed most of their stars before the reionization was complete. Objects with luminosities comparable to those of the classical MW satellites are associated with dark matter subhaloes with a peak circular velocity $gta$ 10 km/s, in agreement with the latest constraints.
Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aqua rius Project, which suggest that MW-sized halos should have at least 8 subhalos with V_max>30km/s. The absence of luminous satellites in such massive subhalos is thus puzzling and may present a challenge to the LCDM paradigm. We note, however, that the number of massive subhalos depends sensitively on the (poorly-known) virial mass of the Milky Way, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e., the number of subhalos as a function of u, the ratio of subhalo V_max to host halo virial velocity, V_200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1< u<0.5, N_sub(> u) is approximately Poisson-distributed about an average given by <N_sub>=10.2x( u/0.15)^(-3.11). This is slightly lower than in Aquarius halos, but consistent with recent results from the Phoenix Project. The probability that a LCDM halo has 3 or fewer subhalos with V_max above some threshold value, V_th, is then straightforward to compute. It decreases steeply both with decreasing V_th and with increasing halo mass. For V_th=30km/s, ~40% of M_halo=10^12 M_sun halos pass the test; fewer than 5% do so for M_halo>= 2x10^12 M_sun; and the probability effectively vanishes for M_halo>= 3x 10^12 M_sun. Rather than a failure of LCDM, the absence of massive subhalos might simply indicate that the Milky Way is less massive than is commonly thought.
We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-band photometry in optical/near-infrared wavelengths ove r ~80% of the sky. Our search for satellite galaxies targets ~25,000 deg$^2$ of the high-Galactic-latitude sky reaching a 10$sigma$ point-source depth of $gtrsim$ 22.5 mag in the $g$ and $r$ bands. While satellite galaxy searches have been performed independently on DES and PS1 before, this is the first time that a self-consistent search is performed across both data sets. We do not detect any new high-significance satellite galaxy candidates, while recovering the majority of satellites previously detected in surveys of comparable depth. We characterize the sensitivity of our search using a large set of simulated satellites injected into the survey data. We use these simulations to derive both analytic and machine-learning models that accurately predict the detectability of Milky Way satellites as a function of their distance, size, luminosity, and location on the sky. To demonstrate the utility of this observational selection function, we calculate the luminosity function of Milky Way satellite galaxies, assuming that the known population of satellite galaxies is representative of the underlying distribution. We provide access to our observational selection function to facilitate comparisons with cosmological models of galaxy formation and evolution.
148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا