ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal isoperimetric inequalities for complete proper minimal submanifolds in hyperbolic space

137   0   0.0 ( 0 )
 نشر من قبل Keomkyo Seo
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Sigma$ be a $k$-dimensional complete proper minimal submanifold in the Poincar{e} ball model $B^n$ of hyperbolic geometry. If we consider $Sigma$ as a subset of the unit ball $B^n$ in Euclidean space, we can measure the Euclidean volumes of the given minimal submanifold $Sigma$ and the ideal boundary $partial_infty Sigma$, say $rvol(Sigma)$ and $rvol(partial_infty Sigma)$, respectively. Using this concept, we prove an optimal linear isoperimetric inequality. We also prove that if $rvol(partial_infty Sigma) geq rvol(mathbb{S}^{k-1})$, then $Sigma$ satisfies the classical isoperimetric inequality. By proving the monotonicity theorem for such $Sigma$, we further obtain a sharp lower bound for the Euclidean volume $rvol(Sigma)$, which is an extension of Fraser and Schoens recent result cite{FS} to hyperbolic space. Moreover we introduce the M{o}bius volume of $Sigma$ in $B^n$ to prove an isoperimetric inequality via the M{o}bius volume for $Sigma$.



قيم البحث

اقرأ أيضاً

We investigate complete minimal submanifolds $fcolon M^3toHy^n$ in hyperbolic space with index of relative nullity at least one at any point. The case when the ambient space is either the Euclidean space or the round sphere was already studied in cit e{dksv1} and cite{dksv2}, respectively. If the scalar curvature is bounded from below we conclude that the submanifold has to be either totally geodesic or a generalized cone over a complete minimal surface lying in an equidistant submanifold of $Hy^n$.
Based on Markvorsen and Palmers work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal submanifolds of $Ntimesmathbb{R}$. We also prove isoperimetric ineq ualities for submanifolds of Hadamard spaces with tamed second fundamental form.
In this paper we investigate $m$-dimensional complete minimal submanifolds in Euclidean spheres with index of relative nullity at least $m-2$ at any point. These are austere submanifolds in the sense of Harvey and Lawson cite{harvey} and were initial ly studied by Bryant cite{br}. For any dimension and codimension there is an abundance of non-complete examples fully described by Dajczer and Florit cite{DF2} in terms of a class of surfaces, called elliptic, for which the ellipse of curvature of a certain order is a circle at any point. Under the assumption of completeness, it turns out that any submanifold is either totally geodesic or has dimension three. In the latter case there are plenty of examples, even compact ones. Under the mild assumption that the Omori-Yau maximum principle holds on the manifold, a trivial condition in the compact case, we provide a complete local parametric description of the submanifolds in terms of $1$-isotropic surfaces in Euclidean space. These are the minimal surfaces for which the standard ellipse of curvature is a circle at any point. For these surfaces, there exists a Weierstrass type representation that generates all simply-connected ones.
119 - Vicent Gimeno 2013
In this paper we provide an extension to the Jellett-Minkowskis formula for immersed submanifolds into ambient manifolds which possesses a pole and radial curvatures bounded from above or below by the radial sectional curvatures of a rotationally sym metric model space. Using this Jellett-Minkowskis generalized formula we can focus on several isoperimetric problems. More precisely, on lower bounds for isoperimetric quotients of any precompact domain with smooth boundary, or on the isoperimetric profile of the submanifold and its modified volume. In the particular case of a model space with strictly decreasing radial curvatures, an Aleksandrov type theorem is provided.
The CR $delta$-invariant for CR-submanifolds was introduced in a recent article [B. Y. Chen, An optimal inequality for CR-warped products in complex space forms involving CR $delta$-invariant, Internat. J. Math. 23} (2012), no. 3, 1250045 (17 pages)] . In this paper, we prove two new optimal inequalities for anti-holomorphic submanifolds in complex space forms involving the CR $delta$-invariant. Moreover, we obtain some classification results for certain anti-holomorphic submanifolds in complex space forms which satisfy the equality case of either inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا