ﻻ يوجد ملخص باللغة العربية
Finding exact Ramsey numbers is a problem typically restricted to relatively small graphs. The flag algebra method was developed to find asymptotic results for very large graphs, so it seems that the method is not suitable for finding small Ramsey numbers. But this intuition is wrong, and we will develop a technique to do just that in this paper. We find new upper bounds for many small graph and hypergraph Ramsey numbers. As a result, we prove the exact values $R(K_4^-,K_4^-,K_4^-)=28$, $R(K_8,C_5)= 29$, $R(K_9,C_6)= 41$, $R(Q_3,Q_3)=13$, $R(K_{3,5},K_{1,6})=17$, $R(C_3, C_5, C_5)= 17$, and $R(K_4^-,K_5^-;3)= 12$. We hope that this technique will be adapted to address other questions for smaller graphs with the flag algebra method.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
A set of vertices $Xsubseteq V$ in a simple graph $G(V,E)$ is irredundant if each vertex $xin X$ is either isolated in the induced subgraph $langle Xrangle$ or else has a private neighbor $yin Vsetminus X$ that is adjacent to $x$ and to no other vert
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).
Let $B_n^{(k)}$ be the book graph which consists of $n$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $C_m$ be a cycle of length $m$. In this paper, we first determine the exact value of $r(B_n^{(2)}, C_m)$ for $frac{8}{9}n+112le mle lceilf
Burr and ErdH{o}s in 1975 conjectured, and Chvatal, Rodl, Szemeredi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr