ﻻ يوجد ملخص باللغة العربية
Let $B_n^{(k)}$ be the book graph which consists of $n$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $C_m$ be a cycle of length $m$. In this paper, we first determine the exact value of $r(B_n^{(2)}, C_m)$ for $frac{8}{9}n+112le mle lceilfrac{3n}{2}rceil+1$ and $n geq 1000$. This answers a question of Faudree, Rousseau and Sheehan (Cycle--book Ramsey numbers, {it Ars Combin.,} {bf 31} (1991), 239--248) in a stronger form when $m$ and $n$ are large. Building upon this exact result, we are able to determine the asymptotic value of $r(B_n^{(k)}, C_n)$ for each $k geq 3$. Namely, we prove that for each $k geq 3$, $r(B_n^{(k)}, C_n)= (k+1+o_k(1))n.$ This extends a result due to Rousseau and Sheehan (A class of Ramsey problems involving trees, {it J.~London Math.~Soc.,} {bf 18} (1978), 392--396).
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).
Finding exact Ramsey numbers is a problem typically restricted to relatively small graphs. The flag algebra method was developed to find asymptotic results for very large graphs, so it seems that the method is not suitable for finding small Ramsey nu
Burr and ErdH{o}s in 1975 conjectured, and Chvatal, Rodl, Szemeredi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy o