ﻻ يوجد ملخص باللغة العربية
Burr and ErdH{o}s in 1975 conjectured, and Chvatal, Rodl, Szemeredi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr--ErdH{o}s conjecture, answering a question of Bucic, Letzter, and Sudakov. If $H$ is an acyclic digraph, the oriented Ramsey number of $H$, denoted $overrightarrow{r_{1}}(H)$, is the least $N$ such that every tournament on $N$ vertices contains a copy of $H$. We show that for any $Delta geq 2$ and any sufficiently large $n$, there exists an acyclic digraph $H$ with $n$ vertices and maximum degree $Delta$ such that [ overrightarrow{r_{1}}(H)ge n^{Omega(Delta^{2/3}/ log^{5/3} Delta)}. ] This proves that $overrightarrow{r_{1}}(H)$ is not always linear in the number of vertices for bounded-degree $H$. On the other hand, we show that $overrightarrow{r_{1}}(H)$ is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs $H$, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs. For multiple colors, we prove a quasipolynomial upper bound $overrightarrow{r_{k}}(H)=2^{(log n)^{O_{k}(1)}}$ for all bounded-degree acyclic digraphs $H$ on $n$ vertices, where $overrightarrow{r_k}(H)$ is the least $N$ such that every $k$-edge-colored tournament on $N$ vertices contains a monochromatic copy of $H$. For $kgeq 2$ and $ngeq 4$, we exhibit an acyclic digraph $H$ with $n$ vertices and maximum degree $3$ such that $overrightarrow{r_{k}}(H)ge n^{Omega(log n/loglog n)}$, showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).
We determine the Ramsey number of a connected clique matching. That is, we show that if $G$ is a $2$-edge-coloured complete graph on $(r^2 - r - 1)n - r + 1$ vertices, then there is a monochromatic connected subgraph containing $n$ disjoint copies of
A book $B_n$ is a graph which consists of $n$ triangles sharing a common edge. In this paper, we study Ramsey numbers of quadrilateral versus books. Previous results give the exact value of $r(C_4,B_n)$ for $1le nle 14$. We aim to show the exact valu
Let $B_n^{(k)}$ be the book graph which consists of $n$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $C_m$ be a cycle of length $m$. In this paper, we first determine the exact value of $r(B_n^{(2)}, C_m)$ for $frac{8}{9}n+112le mle lceilf