ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing connections between exo-atmospheres and their host stars. GEMINI-N/GMOS ground-based transmission spectrum of Qatar-1b

115   0   0.0 ( 0 )
 نشر من قبل Carolina von Essen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Till date, only a handful exo-atmospheres have been well characterized, mostly by means of the transit method. Data show exoplanet atmospheres to be diverse. However, this is based on a small number of cases. Here we focus our study on the exo-atmosphere of Qatar-1b, an exoplanet that looks much like HD 189733b regarding its host star activity level, their surface gravity, scale height, equilibrium temperature and transit parameters. Thus, our motivation relied on carrying out a comparative study of their atmospheres, and assess if these are regulated by their environment. In this work we present one primary transit of Qatar-1b obtained during September, 2014, using the 8.1 m GEMINI North telescope. The observations were performed using the GMOS-N instrument in multi-object spectroscopic mode. We collected fluxes of Qatar-1 and six more reference stars, covering the wavelength range between 460 and 746 nm. The achieved photometric precision of 0.18 parts-per-thousand in the white light curve, at a cadence of 165 seconds, makes this one of the most precise datasets obtained from the ground. We created 12 chromatic transit light curves that we computed by integrating fluxes in wavelength bins of different sizes, ranging between 3.5 and 20 nm. Although the data are of excellent quality, the wavelength coverage and the precision of the transmission spectrum are not sufficient to neither rule out or to favor classic atmospheric models. Nonetheless, simple statistical analysis favors the clear atmosphere scenario. A larger wavelength coverage or space-based data is required to characterize the constituents of Qatar-1bs atmosphere and to compare it to the well known HD 189733b. On top of the similarities of the orbital and physical parameters of both exoplanets, from a long Halpha photometric follow-up of Qatar-1, presented in this work, we find Qatar-1 to be as active as HD 189733.

قيم البحث

اقرأ أيضاً

Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slig htly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 micron wavelengths. We used pixel-level decorrelation to correct for Spitzers intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Our 3.6 micron eclipse depth is 0.149 +/- 0.051% and the 4.5 micron depth is 0.273 +/- 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 +/- 71K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day side only. The day side temperature of the planet is unlikely to be as high (1885K) as indicated by the ground-based eclipses in the Ks band, unless the planets emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 +/- 0.0017, yielding e cos(omega) = -0.0028 +/- 0.0027. Our results are consistent with a circular orbit, and we constrain e cos(omega) much more strongly than has been possible with previous observations.
We present a phase-resolved, optical, spectroscopic study of the eclipsing low-mass X-ray binary, EXO 0748-676 = UY Vol. The sensitivity of Gemini combined with our complete phase coverage makes for the most detailed blue spectroscopic study of this source obtained during its extended twenty-four year period of activity. We identify 12 optical emission lines and present trailed spectra, tomograms, and the first modulation maps of this source in outburst. The strongest line emission originates downstream of the stream-impact point, and this component is quite variable from night-to-night. Underlying this is weaker, more stable axisymmetric emission from the accretion disk. We identify weak, sharp emission components moving in phase with the donor star, from which we measure Kem = 329+/-26 km/s. Combining all the available dynamical constraints on the motion of the donor star with our observed accretion disk velocities we favor a neutron star mass close to canonical (M1~1.5Msun) and a very low mass donor (M2~0.1$Msun). We note that there is no evidence for CNO processing that is often associated with undermassive donor stars, however. A main sequence donor would require both a neutron star more massive than 2Msun and substantially sub-Keplerian disk emission.
126 - R. J. de Kok , D. M. Stam 2012
[Abridged] The transmission of light through a planetary atmosphere can be studied as a function of altitude and wavelength using stellar or solar occultations, giving often unique constraints on the atmospheric composition. For exoplanets, a transit yields a limb-integrated, wavelength-dependent transmission spectrum of an atmosphere. When scattering haze and/or cloud particles are present in the planetary atmosphere, the amount of transmitted flux not only depends on the total optical thickness of the slant light path that is probed, but also on the amount of forward-scattering by the scattering particles. Here, we present results of calculations with a three-dimensional Monte Carlo code that simulates the transmitted flux during occultations or transits. For isotropically scattering particles, like gas molecules, the transmitted flux appears to be well-described by the total atmospheric optical thickness. Strongly forward-scattering particles, however, such as commonly found in atmospheres of Solar System planets, can increase the transmitted flux significantly. For exoplanets, such added flux can decrease the apparent radius of the planet by several scale heights, which is comparable to predicted and measured features in exoplanet transit spectra. We performed detailed calculations for Titans atmosphere between 2.0 and 2.8 micron and show that haze and gas abundances will be underestimated by about 8% if forward-scattering is ignored in the retrievals. At shorter wavelengths, errors in the gas and haze abundances and in the spectral slope of the haze particles can be several tens of percent, also for other Solar System planetary atmospheres. We also find that the contribution of forward-scattering can be fairly well described by modelling the atmosphere as a plane-parallel slab.
157 - Jamie Wilson 2021
We present ground-based, spectroscopic observations of two transits of the ultra-hot Jupiter WASP-121b covering the wavelength range $approx$500 - 950 nm using Gemini/GMOS. We use a Gaussian process framework to model instrumental systematics in the light curves, and also demonstrate the use of the more generalised Students-T process to verify our results. We find that our measured transmission spectrum, whilst showing overall agreement, is slightly discrepant with results obtained using HST/STIS, particularly for wavelengths shortward of $approx$650 nm. In contrast to the STIS results, we find evidence for an increasing blueward slope and little evidence for absorption from either TiO or VO in our retrieval, in agreement with a number of recent studies performed at high-resolution. We suggest that this might point to some other absorbers, particularly some combination of recently detected atomic metals, in addition to scattering by hazes, being responsible for the excess optical absorption and observed vertical thermal inversion. Our results are also broadly consistent with previous ground-based photometry and 3D GCM predictions, however, these assumed different chemistry to our retrievals. In addition, we show that the GMOS observations are repeatable over short periods (days), similarly to the HST/STIS observations. Their difference over longer periods (months) could well be the result of temporal variability in the atmospheric properties (i.e. weather) as predicted by theoretical models of ultra-hot Jupiters; however, more mundane explanations such as instrumental systematics and stellar activity cannot be fully ruled out, and we encourage future observations to explore this possibility.
We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to $rm R_p/R_{star}$=(0.1159$pm$0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600AA$,$ wide we observed a single peaked spectrum (3.7 $rmsigma$ level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا