ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of forward-scattered light in transmission measurements of (exo)planetary atmospheres

126   0   0.0 ( 0 )
 نشر من قبل Remco de Kok
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] The transmission of light through a planetary atmosphere can be studied as a function of altitude and wavelength using stellar or solar occultations, giving often unique constraints on the atmospheric composition. For exoplanets, a transit yields a limb-integrated, wavelength-dependent transmission spectrum of an atmosphere. When scattering haze and/or cloud particles are present in the planetary atmosphere, the amount of transmitted flux not only depends on the total optical thickness of the slant light path that is probed, but also on the amount of forward-scattering by the scattering particles. Here, we present results of calculations with a three-dimensional Monte Carlo code that simulates the transmitted flux during occultations or transits. For isotropically scattering particles, like gas molecules, the transmitted flux appears to be well-described by the total atmospheric optical thickness. Strongly forward-scattering particles, however, such as commonly found in atmospheres of Solar System planets, can increase the transmitted flux significantly. For exoplanets, such added flux can decrease the apparent radius of the planet by several scale heights, which is comparable to predicted and measured features in exoplanet transit spectra. We performed detailed calculations for Titans atmosphere between 2.0 and 2.8 micron and show that haze and gas abundances will be underestimated by about 8% if forward-scattering is ignored in the retrievals. At shorter wavelengths, errors in the gas and haze abundances and in the spectral slope of the haze particles can be several tens of percent, also for other Solar System planetary atmospheres. We also find that the contribution of forward-scattering can be fairly well described by modelling the atmosphere as a plane-parallel slab.

قيم البحث

اقرأ أيضاً

Transmission spectrum surveys have suggested the ubiquity of high-altitude clouds in exoplanetary atmospheres. Theoretical studies have investigated the formation processes of the high-altitude clouds; however, cloud particles have been commonly appr oximated as compact spheres, which is not always true for solid mineral particles that likely constitute exoplanetary clouds. Here, we investigate how the porosity of cloud particles evolve in exoplanetary atmospheres and influence the cloud vertical profiles. We first construct a porosity evolution model that takes into account the fractal aggregation and the compression of cloud particle aggregates. Using a cloud microphysical model coupled with the porosity model, we demonstrate that the particle internal density can significantly decrease during the cloud formation. As a result, fluffy-aggregate clouds ascend to altitude much higher than that for compact-sphere clouds assumed so far. We also examine how the fluffy-aggregate clouds affect transmission spectra. We find that the clouds largely obscure the molecular features and produce a spectral slope originated by the scattering properties of aggregates. Finally, we compare the synthetic spectra with the observations of GJ1214 b and find that its flat spectrum could be explained if the atmospheric metallicity is sufficiently high ($ge100times$ solar) and the monomer size is sufficiently small ($r_{rm mon}<1~{rm {mu}m}$). The high-metallicity atmosphere may offer the clues to explore the gas accretion processes onto past GJ1214b.
We have obtained Hubble Space Telescope STIS and NICMOS, and Gemini/GPI scattered light images of the HD 191089 debris disk. We identify two spatial components: a ring resembling Kuiper Belt in radial extent (FWHM: ${sim}$25 au, centered at ${sim}$46 au), and a halo extending to ${sim}$640 au. We find that the halo is significantly bluer than the ring, consistent with the scenario that the ring serves as the birth ring for the smaller dust in the halo. We measure the scattering phase functions in the 30{deg}-150{deg} scattering angle range and find the halo dust is both more forward- and backward-scattering than the ring dust. We measure a surface density power law index of -0.68${pm}$0.04 for the halo, which indicates the slow-down of the radial outward motion of the dust. Using radiative transfer modeling, we attempt to simultaneously reproduce the (visible) total and (near-infrared) polarized intensity images of the birth ring. Our modeling leads to mutually inconsistent results, indicating that more complex models, such as the inclusion of more realistic aggregate particles, are needed.
Till date, only a handful exo-atmospheres have been well characterized, mostly by means of the transit method. Data show exoplanet atmospheres to be diverse. However, this is based on a small number of cases. Here we focus our study on the exo-atmosp here of Qatar-1b, an exoplanet that looks much like HD 189733b regarding its host star activity level, their surface gravity, scale height, equilibrium temperature and transit parameters. Thus, our motivation relied on carrying out a comparative study of their atmospheres, and assess if these are regulated by their environment. In this work we present one primary transit of Qatar-1b obtained during September, 2014, using the 8.1 m GEMINI North telescope. The observations were performed using the GMOS-N instrument in multi-object spectroscopic mode. We collected fluxes of Qatar-1 and six more reference stars, covering the wavelength range between 460 and 746 nm. The achieved photometric precision of 0.18 parts-per-thousand in the white light curve, at a cadence of 165 seconds, makes this one of the most precise datasets obtained from the ground. We created 12 chromatic transit light curves that we computed by integrating fluxes in wavelength bins of different sizes, ranging between 3.5 and 20 nm. Although the data are of excellent quality, the wavelength coverage and the precision of the transmission spectrum are not sufficient to neither rule out or to favor classic atmospheric models. Nonetheless, simple statistical analysis favors the clear atmosphere scenario. A larger wavelength coverage or space-based data is required to characterize the constituents of Qatar-1bs atmosphere and to compare it to the well known HD 189733b. On top of the similarities of the orbital and physical parameters of both exoplanets, from a long Halpha photometric follow-up of Qatar-1, presented in this work, we find Qatar-1 to be as active as HD 189733.
We observed the Saturn-mass and Jupiter-sized exoplanet HAT-P-19b to refine its transit parameters and ephemeris as well as to shed first light on its transmission spectrum. We monitored the host star over one year to quantify its flux variability an d to correct the transmission spectrum for a slope caused by starspots. A transit of HAT-P-19b was observed spectroscopically with OSIRIS at the Gran Telescopio Canarias in January 2012. The spectra of the target and the comparison star covered the wavelength range from 5600 to 7600 AA. One high-precision differential light curve was created by integrating the entire spectral flux. This white-light curve was used to derive absolute transit parameters. Furthermore, a set of light curves over wavelength was formed by a flux integration in 41 wavelength channels of 50 AA width. We analyzed these spectral light curves for chromatic variations of transit depth. The transit fit of the combined white-light curve yields a refined value of the planet-to-star radius ratio of 0.1390 pm 0.0012 and an inclination of 88.89 pm 0.32 degrees. After a re-analysis of published data, we refine the orbital period to 4.0087844 pm 0.0000015 days. We obtain a flat transmission spectrum without significant additional absorption at any wavelength or any slope. However, our accuracy is not sufficient to significantly rule out the presence of a pressure-broadened sodium feature. Our photometric monitoring campaign allowed for an estimate of the stellar rotation period of 35.5 pm 2.5 days and an improved age estimate of 5.5^+1.8_-1.3 Gyr by gyrochronology.
87 - Tristan Guillot 2010
The evolution of stars and planets is mostly controlled by the properties of their atmosphere. This is particularly true in the case of exoplanets close to their stars, for which one has to account both for an (often intense) irradiation flux, and fr om an intrinsic flux responsible for the progressive loss of the inner planetary heat. The goals of the present work are to help understanding the coupling between radiative transfer and advection in exoplanetary atmospheres and to provide constraints on the temperatures of the deep atmospheres. This is crucial in assessing whether modifying assumed opacity sources and/or heat transport may explain the inflated sizes of a significant number of giant exoplanets found so far. I use a simple analytical approach inspired by Eddingtons approximation for stellar atmospheres to derive a relation between temperature and optical depth valid for plane-parallel static grey atmospheres which are both transporting an intrinsic heat flux and receiving an outer radiation flux. The model is parameterized as a function of mean visible and thermal opacities, respectively. The model is shown to reproduce relatively well temperature profiles obtained from more sophisticated radiative transfer calculations of exoplanetary atmospheres. It naturally explains why a temperature inversion (stratosphere) appears when the opacity in the optical becomes significant compared to that in the infrared. I further show that the mean equivalent flux (proportional to T^4) is conserved in the presence of horizontal advection on constant optical depth levels. This implies with these hypotheses that the deep atmospheric temperature used as outer boundary for the evolution models should be calculated from models pertaining to the entire planetary atmosphere, not from ones that are relevant to the day side or to the substellar point. In these conditions, present-day models yield deep temperatures that are ~1000K too cold to explain the present size of planet HD 209458b. An tenfold increase in the infrared to visible opacity ratio would be required to slow the planetary cooling and contraction sufficiently to explain its size. However, the mean equivalent flux is not conserved anymore in the presence of opacity variations, or in the case of non-radiative vertical transport of energy: The presence of clouds on the night side or a downward transport of kinetic energy and its dissipation at deep levels would help making the deep atmosphere hotter and may explain the inflated sizes of giant exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا