ترغب بنشر مسار تعليمي؟ اضغط هنا

Further constraints on the optical transmission spectrum of HAT-P-1b

82   0   0.0 ( 0 )
 نشر من قبل Marco Montalto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to $rm R_p/R_{star}$=(0.1159$pm$0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600AA$,$ wide we observed a single peaked spectrum (3.7 $rmsigma$ level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.

قيم البحث

اقرأ أيضاً

We present a 0.3-5 micron transmission spectrum of the hot Jupiter HAT-P-32Ab observed with the Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) instruments mounted on the Hubble Space Telescope, combined with Spitzer Infrar ed Array Camera (IRAC) photometry. The spectrum is composed of 51 spectrophotometric bins with widths ranging between 150 and 400 AA, measured to a median precision of 215 ppm. Comparisons of the observed transmission spectrum to a grid of 1D radiative-convective equilibrium models indicate the presence of clouds/hazes, consistent with previous transit observations and secondary eclipse measurements. To provide more robust constraints on the planets atmospheric properties, we perform the first full optical to infrared retrieval analysis for this planet. The retrieved spectrum is consistent with a limb temperature of 1248$pm$92 K, a thick cloud deck, enhanced Rayleigh scattering, and $sim$10x solar H2O abundance. We find log($Z/Z_{odot}$) = 2.41$_{-0.07}^{+0.06}$, in agreement with the mass-metallicity relation derived for the Solar System.
We present a new ground-based visible transmission spectrum of the high-gravity, hot Jupiter HAT-P-23b, obtained as part of the ACCESS project. We derive the spectrum from five transits observed between 2016 and 2018, with combined wavelength coverag e between 5200 {AA} - 9269 {AA} in 200 {AA} bins, and with a median precision of 247 ppm per bin. HAT-P-23bs relatively high surface gravity (g ~ 30 m/s^2), combined with updated stellar and planetary parameters from Gaia DR2, gives a 5-scale-height signal of 384 ppm for a hydrogen-dominated atmosphere. Bayesian models favor a clear atmosphere for the planet with the tentative presence of TiO, after simultaneously modeling stellar contamination, using spots parameter constraints from photometry. If confirmed, HAT-P-23b would be the first example of a high-gravity gas giant with a clear atmosphere observed in transmission at optical/NIR wavelengths; therefore, we recommend expanding observations to the UV and IR to confirm our results and further characterize this planet. This result demonstrates how combining transmission spectroscopy of exoplanet atmospheres with long-term photometric monitoring of the host stars can help disentangle the exoplanet and stellar activity signals.
We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of $R approx 400$ using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.
We present a HST WFC3 transmission spectrum for the transiting exoplanet HAT-P-12b. This warm (1000 K) sub-Saturn-mass planet has a smaller mass and a lower temperature than the hot-Jupiters that have been studied so far. We find that the planets mea sured transmission spectrum lacks the expected water absorption feature for a hydrogen-dominated atmosphere, and is instead best-described by a model with high-altitude clouds. Using a frequentist hypothesis testing procedure, we can rule out a hydrogen-dominated cloud free atmosphere to 4.9$sigma$. When combined with other recent WFC3 studies, our observations suggest that clouds may be common in exo-planetary atmospheres.
95 - N. P. Gibson 2013
We report Gemini-North GMOS observations of the inflated hot Jupiter HAT-P-32b during two primary transits. We simultaneously observed two comparison stars and used differential spectro-photometry to produce multi-wavelength light curves. White light curves and 29 spectral light curves were extracted for each transit and analysed to refine the system parameters and produce transmission spectra from 520-930nm in ~14nm bins. The light curves contain time-varying white noise as well as time-correlated noise, and we used a Gaussian process model to fit this complex noise model. Common mode corrections derived from the white light curve fits were applied to the spectral light curves which significantly improved our precision, reaching typical uncertainties in the transit depth of ~2x10^-4, corresponding to about half a pressure scale height. The low resolution transmission spectra are consistent with a featureless model, and we can confidently rule out broad features larger than about one scale height. The absence of Na/K wings or prominent TiO/VO features is most easily explained by grey absorption from clouds in the upper atmosphere, masking the spectral features. However, we cannot confidently rule out clear atmosphere models with low abundances (~10^-3 solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller scale height or ionisation could also contribute to muted spectral features, but alone are unable to to account for the absence of features reported here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا