ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of the very young PN Hen3-1357 (Stingray Nebula) based on multiwavelength observations

93   0   0.0 ( 0 )
 نشر من قبل Masaaki Otsuka
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masaaki Otsuka




اسأل ChatGPT حول البحث

We have carried out a detailed analysis of the interesting and important very young planetary nebula (PN) Hen3-1357 (Stingray Nebula) based on a unique dataset of optical to far-IR spectra and photometric images. We calculated the abundances of nine elements using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is also supported by the detection of the broad 9/18 um bands from amorphous silicate grain. The observed elemental abundances can be explained by asymptotic giant branch (AGB) nucleosynthesis models for initially 1-1.5 Msun stars with Z = 0.008. The Ne overabundance might be due to the enhancement of 22Ne isotope in the He-rich intershell. By using the spectrum of the central star synthesized by Tlusty as the ionization/heating source of the PN, we constructed the self-consistent photoionization model with Cloudy to the observed quantities, and we derived the gas and dust masses, dust-to-gas mass ratio, and core-mass of the central star. About 80 % of the total dust mass is from warm-cold dust component beyond ionization front. Comparison with other Galactic PNe indicates that Hen3-1357 is an ordinary amorphous silicate rich and O-rich gas PN. Among other studied PNe, IC4846 shows many similarities in properties of the PN to Hen3-1357, although their post-AGB evolution is quite different from each other. Further monitoring observations and comparisons with other PNe such as IC4846 are necessary to understand the evolution of Hen3-1357.



قيم البحث

اقرأ أيضاً

We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.
We performed detailed spectroscopic analyses of a young C-rich planetary nebula (PN) Jonckheere900 (J900) in order to characterise the properties of the central star and nebula. Of the derived 17 elemental abundances, we present the first determinati on of eight elemental abundances. We present the first detection of the [F IV] 4059.9 A, [F V] 13.4 um, and [Rb IV] 5759.6 A lines in J900. J900 exhibits a large enhancement of F and neutron-capture elements Se, Kr, Rb, and Xe. We investigated the physical conditions of the H2 zone using the newly detected mid-IR H2 lines while also using the the previously measured near-IR H2 lines, which indicate warm (~670 K) and hot (~3200 K) temperature regions. We built the spectral energy distribution (SED) model to be consistent with all the observed quantities. We found that about 67 % of all dust and gas components (4.5x10^-4 Msun and 0.83 Msun, respectively) exists beyond the ionisation front, indicating critical importance of photodissociation regions in understanding stellar mass loss. The best-fitting SED model indicates that the progenitor evolved from an initially ~2.0 Msun star which had been in the course of the He-burning shell phase. Indeed, the derived elemental abundance pattern is consistent with that predicted by a asymptotic giant branch star nucleosynthesis model for a 2.0 Msun star with Z = 0.003 and partial mixing zone mass of 6.0x10^-3 Msun. Our study demonstrates how accurately determined abundances of C/F/Ne/neutron-capture elements and gas/dust masses help us understand the origin and the internal evolution of the PN progenitors.
We perform a detailed analysis of the fullerene C60-containing planetary nebula (PN) SaSt2-3 to investigate the physical properties of the central star (B0-1II) and nebula based on our own Subaru/HDS spectra and multiwavelength archival data. By asse ssing the stellar absorption, we derive the effective temperature, surface gravity, and photospheric abundances. For the first time, we report time variability of the central stars radial velocity, strongly indicating a binary central star. Comparison between the derived elemental abundances and those predicted values by asymptotic giant branch (AGB) star nucleosynthesis models indicates that the progenitor is a star with initial mass of ~1.25 Msun and metallicity Z = 0.001/alpha-element/Cl-rich ([alpha,Cl/Fe] ~ +0.3-0.4). We determine the distance (11.33 kpc) to be consistent with the post-AGB evolution of 1.25 Msun initial mass stars with Z = 0.001. Using the photoionisation model, we fully reproduce the derived quantities by adopting a cylindrically shaped nebula. We derive the mass fraction of the C-atoms present in atomic gas, graphite grain, and C60. The highest mass fraction of C60 (~0.19%) indicates that SaSt2-3 is the C60-richest PN amongst Galactic PNe. From comparison of stellar/nebular properties with other C60 PNe, we conclude that the C60 formation depends on the central stars properties and its surrounding environment (e.g., binary disc), rather than the amount of C-atoms produced during the AGB phase.
80 - Eric D. Feigelson 2017
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.
We comprehensively study the variability of Miras in the Large Magellanic Cloud (LMC) by simultaneous analysing light curves in 14 bands in the range of 0.5$-$24 microns. We model over 20-years-long, high cadence $I$-band light curves collected by Th e Optical Gravitational Lensing Experiment (OGLE) and fit them to light curves collected in the remaining optical/near-infrared/mid-infrared bands to derive both the variability amplitude ratio and phase-lag as a function of wavelength. We show that the variability amplitude ratio declines with the increasing wavelength for both oxygen-rich (O-rich) and carbon-rich (C-rich) Miras, while the variability phase-lag increases slightly with the increasing wavelength. In a significant number of Miras, mostly the C-rich ones, the spectral energy distributions (SEDs) require a presence of a cool component (dust) in order to match the mid-IR data. Based on SED fits for a golden sample of 140 Miras, we calculated synthetic period-luminosity relations (PLRs) in 42 bands for the existing and future sky surveys that include OGLE, The VISTA Near-Infrared $YJK_mathrm{s}$ Survey of the Magellanic Clouds System (VMC), Legacy Survey of Space and Time (LSST), Gaia, Spitzer, The Wide-field Infrared Survey Explorer (WISE), The James Webb Space Telescope (JWST), The Nancy Grace Roman Space Telescope (formerly WFIRST), and The Hubble Space Telescope (HST). We show that the synthetic PLR slope decreases with increasing wavelength for both the O-rich and C-rich Miras in the range of 0.1$-$40 microns. Finally, we show the location and motions of Miras on the color-magnitude (CMD) and color-color (CCD) diagrams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا