ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of the fullerene C60-containing planetary nebula SaSt 2-3

150   0   0.0 ( 0 )
 نشر من قبل Masaaki Otsuka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a detailed analysis of the fullerene C60-containing planetary nebula (PN) SaSt2-3 to investigate the physical properties of the central star (B0-1II) and nebula based on our own Subaru/HDS spectra and multiwavelength archival data. By assessing the stellar absorption, we derive the effective temperature, surface gravity, and photospheric abundances. For the first time, we report time variability of the central stars radial velocity, strongly indicating a binary central star. Comparison between the derived elemental abundances and those predicted values by asymptotic giant branch (AGB) star nucleosynthesis models indicates that the progenitor is a star with initial mass of ~1.25 Msun and metallicity Z = 0.001/alpha-element/Cl-rich ([alpha,Cl/Fe] ~ +0.3-0.4). We determine the distance (11.33 kpc) to be consistent with the post-AGB evolution of 1.25 Msun initial mass stars with Z = 0.001. Using the photoionisation model, we fully reproduce the derived quantities by adopting a cylindrically shaped nebula. We derive the mass fraction of the C-atoms present in atomic gas, graphite grain, and C60. The highest mass fraction of C60 (~0.19%) indicates that SaSt2-3 is the C60-richest PN amongst Galactic PNe. From comparison of stellar/nebular properties with other C60 PNe, we conclude that the C60 formation depends on the central stars properties and its surrounding environment (e.g., binary disc), rather than the amount of C-atoms produced during the AGB phase.



قيم البحث

اقرأ أيضاً

89 - Norio Ota 2019
It had been understood that astronomically observed infrared spectrum of carbon rich planetary nebula as like Tc 1 and Lin 49 comes from fullerene (C60). Also, it is well known that graphene is a raw material for synthesizing fullerene. This study se eks some capability of graphene based on the quantum-chemical DFT calculation. It was demonstrated that graphene plays major role rather than fullerene. We applied two astrophysical conditions, which are void creation by high speed proton and photo-ionization by the central star. Model molecule was ionized void-graphene (C23) having one carbon pentagon combined with hexagons. By molecular vibrational analysis, we could reproduce six major bands from 6 to 9 micrometer, large peak at 12.8, and largest peak at 19.0. Also, many minor bands could be reproduced from 6 to 38 micrometer. Also, deeply void induced molecules (C22) and (C21) could support observed bands.
Recent studies have indicated that triple star systems may play a role in the formation of an appreciable number of planetary nebulae, however only one triple central star is known to date (and that system is likely too wide to have had much influenc e on the evolution of its component stars). Here, we consider the possibility that Sh 2-71 was formed by a triple system which has since broken apart. We present the discovery of two regions of emission, seemingly aligned with the proposed tertiary orbit (i.e. in line with the axis formed by the two candidate central star systems previously considered in the literature). We also perform a few simple tests of the plausibility of the triple hypothesis based on the observed properties (coordinates, radial velocities, distances and proper motions) of the stars observed close to the projected centre of the nebula, adding further support through numerical integrations of binary orbits responding to mass loss. Although a number of open questions remain, we conclude that Sh 2-71 is currently one of the best candidates for planetary nebula formation influenced by triple-star interactions.
We performed multiwavelength observations of the young planetary nebula (PN) M1-11 and obtained its elemental abundances, dust mass, and the evolutionary status of the central star. The AKARI/IRC, VLT/VISIR, and Spitzer/IRS spectra show features due to carbon-rich dust, such as the 3.3, 8.6, and 11.3 um features due to polycyclic aromatic hydrocarbons (PAHs), a smooth continuum attributable to amorphous carbon, and the broad 11.5 and 30 um features often ascribed to SiC and MgS, respectively. We also report the presence of an unidentified broad feature at 16-22 um, similar to the feature found in Magellanic Cloud PNe with either C-rich or O-rich gas-phase compositions. We identify for the first time in M1-11 spectral lines at 8.5 (blended with PAH), 17.3, and 18.9 um that we attribute to the C60 fullerene. This identification is strengthened by the fact that other Galactic PNe in which fullerenes are detected, have similar central stars, similar gas-phase abundances, and a similar dust composition to M1-11. The weak radiation field due to the relatively cool central stars in these PNe may provide favorable conditions for fullerenes to survive in the circumstellar medium. Using the photo-ionization code CLOUDY, combined with a modified blackbody, we have fitted the ~0.1-90 um spectral energy distribution and determined the dust mass in the nebula to be ~3.5x10^{-4} Msun$. Our chemical abundance analysis and SED model suggest that M1-11 is perhaps a C-rich PN with C/O ratio in the gas-phase of +0.19 dex, and that it evolved from a 1-1.5 Msun star.
86 - A. Danehkar 2021
Wolf-Rayet ([WR]) and weak emission-line ($wels$) central stars of planetary nebulae (PNe) have hydrogen-deficient atmospheres, whose origins are not well understood. In the present study, we have conducted plasma diagnostics and abundance analyses o f 18 Galactic PNe surrounding [WR] and $wels$ nuclei, using collisionally excited lines (CELs) and optical recombination lines (ORLs) measured with the Wide Field Spectrograph on the ANU 2.3-m telescope at the Siding Spring Observatory complemented with optical archival data. Our plasma diagnostics imply that the electron densities and temperatures derived from CELs are correlated with the intrinsic nebular H$beta$ surface brightness and excitation class, respectively. Self-consistent plasma diagnostics of heavy element ORLs of N${}^{2+}$ and O${}^{2+}$ suggest that a small fraction of cool ($lesssim 7000$ K), dense ($sim 10^4-10^5$ cm$^{-3}$) materials may be present in some objects, though with large uncertainties. Our abundance analyses indicate that the abundance discrepancy factors (ADF$equiv$ORLs/CELs) of O${}^{2+}$ are correlated with the dichotomies between forbidden-line and He I temperatures. Our results likely point to the presence of a tiny fraction of cool, oxygen-rich dense clumps within the diffuse warm ionized nebulae. Moreover, our elemental abundances derived from CELs are mostly consistent with AGB models in the range of initial masses from 1.5 to 5M$_{odot}$. Further studies are necessary to understand better the origins of abundance discrepancies in PNe around [WR] and $wels$ stars.
The ACIS-S camera on board the Chandra X-ray Observatory has been used to discover a hot bubble in the planetary nebula (PN) IC4593, the most distant PN detected by Chandra so far. The data are used to study the distribution of the X-ray-emitting gas in IC 4593 and to estimate its physical properties. The hot bubble has a radius of ~2$^{primeprime}$ and is found to be confined inside the optically-bright innermost cavity of IC 4593. The X-ray emission is mostly consistent with that of an optically-thin plasma with temperature $kTapprox0.15$ keV (or $T_mathrm{X}approx1.7times10^{6}$ K), electron density $n_mathrm{e}approx15$ cm$^{-3}$, and intrinsic X-ray luminosity in the 0.3-1.5 keV energy range $L_mathrm{X}=3.4times10^{30}$ erg s$^{-1}$. A careful analysis of the distribution of hard ($E>$0.8 keV) photons in IC 4593 suggests the presence of X-ray emission from a point source likely associated with its central star (CSPN). If this were the case, its estimated X-ray luminosity would be $L_mathrm{X,CSPN}=7times10^{29}$ erg s$^{-1}$, fulfilling the log$(L_mathrm{X,CSPN}/L_mathrm{bol})approx-7$ relation for self-shocking winds in hot stars. The X-ray detection of the CSPN helps explain the presence of high-ionisation species detected in the UV spectra as predicted by stellar atmosphere models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا