ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength properties of Miras

110   0   0.0 ( 0 )
 نشر من قبل Patryk Iwanek
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We comprehensively study the variability of Miras in the Large Magellanic Cloud (LMC) by simultaneous analysing light curves in 14 bands in the range of 0.5$-$24 microns. We model over 20-years-long, high cadence $I$-band light curves collected by The Optical Gravitational Lensing Experiment (OGLE) and fit them to light curves collected in the remaining optical/near-infrared/mid-infrared bands to derive both the variability amplitude ratio and phase-lag as a function of wavelength. We show that the variability amplitude ratio declines with the increasing wavelength for both oxygen-rich (O-rich) and carbon-rich (C-rich) Miras, while the variability phase-lag increases slightly with the increasing wavelength. In a significant number of Miras, mostly the C-rich ones, the spectral energy distributions (SEDs) require a presence of a cool component (dust) in order to match the mid-IR data. Based on SED fits for a golden sample of 140 Miras, we calculated synthetic period-luminosity relations (PLRs) in 42 bands for the existing and future sky surveys that include OGLE, The VISTA Near-Infrared $YJK_mathrm{s}$ Survey of the Magellanic Clouds System (VMC), Legacy Survey of Space and Time (LSST), Gaia, Spitzer, The Wide-field Infrared Survey Explorer (WISE), The James Webb Space Telescope (JWST), The Nancy Grace Roman Space Telescope (formerly WFIRST), and The Hubble Space Telescope (HST). We show that the synthetic PLR slope decreases with increasing wavelength for both the O-rich and C-rich Miras in the range of 0.1$-$40 microns. Finally, we show the location and motions of Miras on the color-magnitude (CMD) and color-color (CCD) diagrams.



قيم البحث

اقرأ أيضاً

92 - Masaaki Otsuka 2017
We have carried out a detailed analysis of the interesting and important very young planetary nebula (PN) Hen3-1357 (Stingray Nebula) based on a unique dataset of optical to far-IR spectra and photometric images. We calculated the abundances of nine elements using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is also supported by the detection of the broad 9/18 um bands from amorphous silicate grain. The observed elemental abundances can be explained by asymptotic giant branch (AGB) nucleosynthesis models for initially 1-1.5 Msun stars with Z = 0.008. The Ne overabundance might be due to the enhancement of 22Ne isotope in the He-rich intershell. By using the spectrum of the central star synthesized by Tlusty as the ionization/heating source of the PN, we constructed the self-consistent photoionization model with Cloudy to the observed quantities, and we derived the gas and dust masses, dust-to-gas mass ratio, and core-mass of the central star. About 80 % of the total dust mass is from warm-cold dust component beyond ionization front. Comparison with other Galactic PNe indicates that Hen3-1357 is an ordinary amorphous silicate rich and O-rich gas PN. Among other studied PNe, IC4846 shows many similarities in properties of the PN to Hen3-1357, although their post-AGB evolution is quite different from each other. Further monitoring observations and comparisons with other PNe such as IC4846 are necessary to understand the evolution of Hen3-1357.
We report the results of a near-infrared survey for long-period variables in a field of view of 20 arcmin by 30 arcmin towards the Galactic Centre (GC). We have detected 1364 variables, of which 348 are identified with those reported in Glass et al. (2001). We present a catalogue and photometric measurements for the detected variables and discuss their nature. We also establish a method for the simultaneous estimation of distances and extinctions using the period-luminosity relations for the JHKs bands. Our method is applicable to Miras with periods in the range 100--350 d and mean magnitudes available in two or more filter bands. While J-band means are often unavailable for our objects because of the large extinction, we estimated distances and extinctions for 143 Miras whose H- and Ks-band mean magnitudes are obtained. We find that most are located at the same distance to within our accuracy. Assuming that the barycentre of these Miras corresponds to the GC, we estimate its distance modulus to be 14.58+-0.02(stat.)+-0.11(syst.) mag, corresponding to 8.24+-0.08(stat.)+-0.42(syst.) kpc. We have assumed the distance modulus to the LMC to be 18.45 mag, and the uncertainty in this quantity is included in the systematic error above. We also discuss the large and highly variable extinction. Its value ranges from 1.5 mag to larger than 4 mag in A(Ks) except towards the thicker dark nebulae and it varies in a complicated way with the line of sight. We have identified mid-infrared counterparts in the Spitzer/IRAC catalogue of Ramirez et al. (2008) for most of our variables and find that they follow rather narrow period-luminosity relations in the 3.6 to 8.0 micrometre wavelength range.
80 - Eric D. Feigelson 2017
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.
We investigate the nature and classification of PMNJ1603-4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum gamma-ray sources detected by Fermi/LAT. It has previously been classified a s a low-peaked BL Lac object based on its broadband emission and the absence of optical emission lines. Optical measurements, however, suffer strongly from extinction and the absence of pronounced short-time gamma-ray variability over years of monitoring is unusual for a blazar. We are combining new and archival multiwavelength data in order to reconsider the classification and nature of this unusual gamma-ray source. For the first time, we study the radio morphology at 8.4GHz and 22.3GHz, and its spectral properties on milliarcsecond (mas) scales, based on VLBI observations from the TANAMI program. We combine the resulting images with multiwavelength data in the radio, IR, optical/UV, X-ray, and gamma-ray regimes. PMNJ1603-4904 shows a symmetric brightness distribution at 8.4GHz on mas-scales, with the brightest, and most compact component in the center of the emission region. The morphology is reminiscent of a Compact Symmetric Object (CSO). Such objects have been predicted to produce gamma-ray emission but have not been detected as a class by Fermi/LAT so far. Sparse (u, v)-coverage at 22.3GHz prevents an unambiguous modeling of the source morphology. IR measurements reveal an excess in the spectral energy distribution (SED), which can be modeled with a blackbody with a temperature of about 1600K, and which is usually not present in blazar SEDs. The VLBI data and the shape of the SED challenge the current blazar classification. PMNJ1603-4904 seems to be either a highly peculiar BL Lac object or a misaligned jet source. In the latter case, the intriguing VLBI structure opens room for a possible classification as a gamma-ray bright CSO.
Herschels PACS instrument observed the environment of the binary system Mira Ceti in the 70 and 160 micron bands. These images reveal bright structures shaped as five broken arcs and fainter filaments in the ejected material of Miras primary star. Th e overall shape of the IR emission around Mira deviates significantly from the expected alignment with Miras exceptionally high space velocity. The observed broken arcs are neither connected to each other nor are they of a circular shape; they stretch over angular ranges of 80 to 100 degrees. By comparing Herschel and GALEX data, we found evidence for the disruption of the IR arcs by the fast outflow visible in both Halpha and the far UV. Radial intensity profiles are derived, which place the arcs at distances of 6-85 (550 - 8000 AU) from the binary. Miras IR environment appears to be shaped by the complex interaction of Miras wind with its companion, the bipolar jet, and the ISM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا