ترغب بنشر مسار تعليمي؟ اضغط هنا

Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence Labelling

169   0   0.0 ( 0 )
 نشر من قبل Zhenyao Zhu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most existing sequence labelling models rely on a fixed decomposition of a target sequence into a sequence of basic units. These methods suffer from two major drawbacks: 1) the set of basic units is fixed, such as the set of words, characters or phonemes in speech recognition, and 2) the decomposition of target sequences is fixed. These drawbacks usually result in sub-optimal performance of modeling sequences. In this pa- per, we extend the popular CTC loss criterion to alleviate these limitations, and propose a new loss function called Gram-CTC. While preserving the advantages of CTC, Gram-CTC automatically learns the best set of basic units (grams), as well as the most suitable decomposition of tar- get sequences. Unlike CTC, Gram-CTC allows the model to output variable number of characters at each time step, which enables the model to capture longer term dependency and improves the computational efficiency. We demonstrate that the proposed Gram-CTC improves CTC in terms of both performance and efficiency on the large vocabulary speech recognition task at multiple scales of data, and that with Gram-CTC we can outperform the state-of-the-art on a standard speech benchmark.

قيم البحث

اقرأ أيضاً

In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RN Ns. We compare all models, either traditional or new, on four distinct tasks of sequence labeling: two on Spoken Language Understanding (ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs are always more effective than the others.
Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a sing le-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC). We show that this joint training method directly optimizes performance for the downstream ASR task using unsupervised data while achieving similar word error rates to wav2vec~2.0 on the Librispeech 100-hour dataset. Finally, we postulate that solving the contrastive task is a regularization for the supervised CTC loss.
To advance understanding on how to engage readers, we advocate the novel task of automatic pull quote selection. Pull quotes are a component of articles specifically designed to catch the attention of readers with spans of text selected from the arti cle and given more salient presentation. This task differs from related tasks such as summarization and clickbait identification by several aspects. We establish a spectrum of baseline approaches to the task, ranging from handcrafted features to a neural mixture-of-experts to cross-task models. By examining the contributions of individual features and embedding dimensions from these models, we uncover unexpected properties of pull quotes to help answer the important question of what engages readers. Human evaluation also supports the uniqueness of this task and the suitability of our selection models. The benefits of exploring this problem further are clear: pull quotes increase enjoyment and readability, shape reader perceptions, and facilitate learning. Code to reproduce this work is available at https://github.com/tannerbohn/AutomaticPullQuoteSelection.
While Truncated Back-Propagation through Time (BPTT) is the most popular approach to training Recurrent Neural Networks (RNNs), it suffers from being inherently sequential (making parallelization difficult) and from truncating gradient flow between d istant time-steps. We investigate whether Target Propagation (TPROP) style approaches can address these shortcomings. Unfortunately, extensive experiments suggest that TPROP generally underperforms BPTT, and we end with an analysis of this phenomenon, and suggestions for future work.
Conventional wisdom is that hand-crafted features are redundant for deep learning models, as they already learn adequate representations of text automatically from corpora. In this work, we test this claim by proposing a new method for exploiting han dcrafted features as part of a novel hybrid learning approach, incorporating a feature auto-encoder loss component. We evaluate on the task of named entity recognition (NER), where we show that including manual features for part-of-speech, word shapes and gazetteers can improve the performance of a neural CRF model. We obtain a $F_1$ of 91.89 for the CoNLL-2003 English shared task, which significantly outperforms a collection of highly competitive baseline models. We also present an ablation study showing the importance of auto-encoding, over using features as either inputs or outputs alone, and moreover, show including the autoencoder components reduces training requirements to 60%, while retaining the same predictive accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا