ﻻ يوجد ملخص باللغة العربية
Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a single-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC). We show that this joint training method directly optimizes performance for the downstream ASR task using unsupervised data while achieving similar word error rates to wav2vec~2.0 on the Librispeech 100-hour dataset. Finally, we postulate that solving the contrastive task is a regularization for the supervised CTC loss.
The quality of automatic speech recognition (ASR) is critical to Dialogue Systems as ASR errors propagate to and directly impact downstream tasks such as language understanding (LU). In this paper, we propose multi-task neural approaches to perform c
BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address th
Automatic speech recognition (ASR) systems have dramatically improved over the last few years. ASR systems are most often trained from typical speech, which means that underrepresented groups dont experience the same level of improvement. In this pap
Hybrid automatic speech recognition (ASR) models are typically sequentially trained with CTC or LF-MMI criteria. However, they have vastly different legacies and are usually implemented in different frameworks. In this paper, by decoupling the concep
Neural Language Models (NLM), when trained and evaluated with context spanning multiple utterances, have been shown to consistently outperform both conventional n-gram language models and NLMs that use limited context. In this paper, we investigate v