ترغب بنشر مسار تعليمي؟ اضغط هنا

Rank-to-engage: New Listwise Approaches to Maximize Engagement

108   0   0.0 ( 0 )
 نشر من قبل Swayambhoo Jain
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

For many internet businesses, presenting a given list of items in an order that maximizes a certain metric of interest (e.g., click-through-rate, average engagement time etc.) is crucial. We approach the aforementioned task from a learning-to-rank perspective which reveals a new problem setup. In traditional learning-to-rank literature, it is implicitly assumed that during the training data generation one has access to the emph{best or desired} order for the given list of items. In this work, we consider a problem setup where we do not observe the desired ranking. We present two novel solutions: the first solution is an extension of already existing listwise learning-to-rank technique--Listwise maximum likelihood estimation (ListMLE)--while the second one is a generic machine learning based framework that tackles the problem in its entire generality. We discuss several challenges associated with this generic framework, and propose a simple emph{item-payoff} and emph{positional-gain} model that addresses these challenges. We provide training algorithms, inference procedures, and demonstrate the effectiveness of the two approaches over traditional ListMLE on synthetic as well as on real-life setting of ranking news articles for increased dwell time.

قيم البحث

اقرأ أيضاً

Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
Most recommendation engines today are based on predicting user engagement, e.g. predicting whether a user will click on an item or not. However, there is potentially a large gap between engagement signals and a desired notion of value that is worth o ptimizing for. We use the framework of measurement theory to (a) confront the designer with a normative question about what the designer values, (b) provide a general latent variable model approach that can be used to operationalize the target construct and directly optimize for it, and (c) guide the designer in evaluating and revising their operationalization. We implement our approach on the Twitter platform on millions of users. In line with established approaches to assessing the validity of measurements, we perform a qualitative evaluation of how well our model captures a desired notion of value.
We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity on the morphology of Cosmic Microwave Background (CMB) maps in several domains: in real-space (where they are commonly known as cumulant-correlators), and in harmonic and needlet bases. The essential aim is to retain more information than normally contained in these statistics, in order to assist in determining the source of any measured non-Gaussianity, in the same spirit as Munshi & Heavens (2010) skew-spectra were used to identify foreground contaminants to the CMB bispectrum in Planck data. Using a perturbative series to construct the Minkowski Functionals (MFs), we provide a pseudo-Cl based approach in both harmonic and needlet representations to estimate these spectra in the presence of a mask and inhomogeneous noise. Assuming homogeneous noise we present approx- imate expressions for error covariance for the purpose of joint estimation of these spectra. We present specific results for four different models of primordial non-Gaussianity local, equilateral, orthogonal and enfolded models, as well as non-Gaussianity caused by unsubtracted point sources. Closed form results of next-order corrections to MFs too are obtained in terms of a quadruplet of kurt-spectra. We also use the method of modal decomposition of the bispectrum and trispectrum to reconstruct the MFs as an alternative method of reconstruction of morphological properties of CMB maps. Finally, we introduce the odd-parity skew-spectra to probe the odd-parity bispectrum and its impact on the morphology of the CMB sky. Although developed for the CMB, the generic results obtained here can be useful in other areas of cosmology.
107 - Xiang Cai , Rishab Nithyanand , 2014
Website fingerprinting attacks enable an adversary to infer which website a victim is visiting, even if the victim uses an encrypting proxy, such as Tor. Previous work has shown that all proposed defenses against website fingerprinting attacks are in effective. This paper advances the study of website fingerprinting attacks and defenses in two ways. First, we develop bounds on the trade-off between security and bandwidth overhead that any fingerprinting defense scheme can achieve. This enables us to compare schemes with different security/overhead trade-offs by comparing how close they are to the lower bound. We then refine, implement, and evaluate the Congestion Sensitive BuFLO scheme outlined by Cai, et al. CS-BuFLO, which is based on the provably-secure BuFLO defense proposed by Dyer, et al., was not fully-specified by Cai, et al, but has nonetheless attracted the attention of the Tor developers. Our experiments find that CS-BuFLO has high overhead (around 2.3-2.8x) but can get 6x closer to the bandwidth/security trade-off lower bound than Tor or plain SSH.
The use of multivariate classifiers has become commonplace in particle physics. To enhance the performance, a series of classifiers is typically trained; this is a technique known as boosting. This paper explores several novel boosting methods that h ave been designed to produce a uniform selection efficiency in a chosen multivariate space. Such algorithms have a wide range of applications in particle physics, from producing uniform signal selection efficiency across a Dalitz-plot to avoiding the creation of false signal peaks in an invariant mass distribution when searching for new particles.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا