ترغب بنشر مسار تعليمي؟ اضغط هنا

New Approaches to Probing Minkowski Functionals

188   0   0.0 ( 0 )
 نشر من قبل Joseph Smidt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity on the morphology of Cosmic Microwave Background (CMB) maps in several domains: in real-space (where they are commonly known as cumulant-correlators), and in harmonic and needlet bases. The essential aim is to retain more information than normally contained in these statistics, in order to assist in determining the source of any measured non-Gaussianity, in the same spirit as Munshi & Heavens (2010) skew-spectra were used to identify foreground contaminants to the CMB bispectrum in Planck data. Using a perturbative series to construct the Minkowski Functionals (MFs), we provide a pseudo-Cl based approach in both harmonic and needlet representations to estimate these spectra in the presence of a mask and inhomogeneous noise. Assuming homogeneous noise we present approx- imate expressions for error covariance for the purpose of joint estimation of these spectra. We present specific results for four different models of primordial non-Gaussianity local, equilateral, orthogonal and enfolded models, as well as non-Gaussianity caused by unsubtracted point sources. Closed form results of next-order corrections to MFs too are obtained in terms of a quadruplet of kurt-spectra. We also use the method of modal decomposition of the bispectrum and trispectrum to reconstruct the MFs as an alternative method of reconstruction of morphological properties of CMB maps. Finally, we introduce the odd-parity skew-spectra to probe the odd-parity bispectrum and its impact on the morphology of the CMB sky. Although developed for the CMB, the generic results obtained here can be useful in other areas of cosmology.



قيم البحث

اقرأ أيضاً

211 - Jan M. Kratochvil 2011
In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulat ions to create mock WL convergence maps, and study the cosmological information content of MFs derived from these maps. Our suite consists of 80 independent 512^3 N-body runs, covering seven different cosmologies, varying three cosmological parameters Omega_m, w, and sigma_8 one at a time, around a fiducial LambdaCDM model. In each cosmology, we use ray-tracing to create a thousand pseudo-independent 12 deg^2 convergence maps, and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above three parameters. We include redshift tomography at three different source redshifts z_s=1, 1.5, 2, explore five different smoothing scales theta_G=1, 2, 3, 5, 10 arcmin, and explicitly compare and combine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The MFs are particularly well suited to break degeneracies and to constrain the dark energy equation of state parameter w (by a factor of ~ three better than from the power spectrum alone). The non-Gaussian information derives partly from the one-point function of the convergence (through V_0, the area MF), and partly through non-linear spatial information (through combining different smoothing scales for V_0, and through V_1 and V_2, the boundary length and genus MFs, respectively). In contrast to the power spectrum, the best constraints from the MFs are obtained only when multiple smoothing scales are combined.
233 - Wenjuan Fang 2017
The morphological properties of large scale structure of the Universe can be fully described by four Minkowski functionals (MFs), which provide important complementary information to other statistical observables such as the widely used 2-point stati stics in configuration and Fourier spaces. In this work, for the first time, we present the differences in the morphology of large scale structure caused by modifications to general relativity (to address the cosmic acceleration problem), by measuring the MFs from N-body simulations of modified gravity and general relativity. We find strong statistical power when using the MFs to constrain modified theories of gravity: with a galaxy survey that has survey volume $sim 0.125 (h^{-1}$Gpc$)^3$ and galaxy number density $sim 1 / (h^{-1}$Mpc$)^{3}$, the two normal-branch DGP models and the F5 $f(R)$ model that we simulated can be discriminated from $Lambda$CDM at a significance level >~ 5$sigma$ with an individual MF measurement. Therefore, the MF of large scale structure is potentially a powerful probe of gravity, and its application to real data deserves active explorations.
We present a new harmonic-domain approach for extracting morphological information, in the form of Minkowski Functionals (MFs), from weak lensing (WL) convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the range of angular scales probed by most current weak-lensing surveys, we show that the study of three generalized skewness parameters is equivalent to the study of the three MFs defined in two dimensions. We then extend these skewness parameters to three associated skew-spectra which carry more information about the convergence bispectrum than their one-point counterparts. We discuss various issues such as noise and incomplete sky coverage in the context of estimation of these skew-spectra from realistic data. Our technique provides an alternative to the pixel-space approaches typically used in the estimation of MFs, and it can be particularly useful in the presence of masks with non-trivial topology. Analytical modeling of weak lensing statistics relies on an accurate modeling of the statistics of underlying density distribution. We apply three different formalisms to model the underlying dark-matter bispectrum: the hierarchical ansatz, halo model and a fitting function based on numerical simulations; MFs resulting from each of these formalisms are computed and compared. We investigate the extent to witch late-time gravity-induced non-Gaussianity (to which weak lensing is primarily sensitive) can be separated from primordial non-Gaussianity and how this separation depends on source redshift and angular scale.
Stage IV lensing surveys promise to make available an unprecedented amount of excellent data which will represent a huge leap in terms of both quantity and quality. This will open the way to the use of novel tools, which go beyond the standard second order statistics probing the high order properties of the convergence field. We discuss the use of Minkowski Functionals (MFs) as complementary probes to increase the lensing Figure of Merit (FoM), for a survey made out of a wide total area $A_{rm{tot}}$ imaged at a limiting magnitude $rm{mag_{W}}$ containing a subset of area $A_{rm{deep}}$ where observations are pushed to a deeper limiting magnitude $rm{mag_{D}}$. We present an updated procedure to match the theoretically predicted MFs to the measured ones, taking into account the impact of map reconstruction from noisy shear data. We validate this renewed method against simulated data sets with different source redshift distributions and total number density, setting these quantities in accordance with the depth of the survey. We can then rely on a Fisher matrix analysis to forecast the improvement in the FoM due to the joint use of shear tomography and MFs under different assumptions on $(A_{rm{tot}},,A_{rm{deep}},,rm{mag_{D}})$, and the prior on the MFs nuisance parameters. It turns out that MFs can provide a valuable help in increasing the FoM of the lensing survey, provided the nuisance parameters are known with a non negligible precision. What is actually more interesting is the possibility to compensate for the loss of FoM due to a cut in the multipole range probed by shear tomography, which makes the results more robust against uncertainties in the modeling of nonlinearities. This makes MFs a promising tool to both increase the FoM and make the constraints on the cosmological parameters less affected by theoretical systematic effects.
We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two datasets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al. (2006), which can be used to constrain the coupling parameter f_NL without the need for non-Gaussian simulations. We find -1020<f_NL<390 at 95% CL, significantly improving the previous constraints by De Troia et al. (2007) on the BOOMERanG 2003 dataset. These are the best f_NL limits to date for suborbital probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا