ﻻ يوجد ملخص باللغة العربية
Graphene is an ideal material for fabricating atomically thin nanometre spaced electrodes. Recently, carbon-based nanoelectrodes have been employed to create single-molecule transistors and phase change memory devices. In spite of the significant recent interest in their use in a range of nanoscale devices from phase change memories to molecular electronics, the operating and scaling limits of these electrodes are completely unknown. In this paper, we report on our observations of consistent voltage driven resistance switching in sub-5 nm graphene nanogaps. We find that we are able to reversibly cycle between a low and a high resistance state using feedback-controlled voltage ramps.We attribute this unexplained switching in the gap to the formation and breakdown of carbon filaments.By increasing the gap, we find that such intrinsic resistance switching of graphene nanogaps imposes a scaling limit of 10 nm (approx.) on the gap-size for devices with operating voltages of 1 to 2 volts.
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids. This conclusion is based on theory and supported by experiments that could not detect gas permeation through micrometre-size
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra
The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifet
Graphene is a promising candidate for optoelectronic applications such as photodetectors, terahertz imagers, and plasmonic devices. The origin of photoresponse in graphene junctions has been studied extensively and is attributed to either thermoelect
Graphene oxide (GO) flakes have been deposited to bridge the gap between two epitaxial graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers (SB) at the graphene/graphene oxide junctio