ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on gas impermeability of graphene

122   0   0.0 ( 0 )
 نشر من قبل Andre Geim K
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids. This conclusion is based on theory and supported by experiments that could not detect gas permeation through micrometre-size membranes within a detection limit of 10^5 to 10^6 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We could discern permeation of just a few helium atoms per hour, and this detection limit is also valid for all other tested gases (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. The puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.

قيم البحث

اقرأ أيضاً

Graphene is an ideal material for fabricating atomically thin nanometre spaced electrodes. Recently, carbon-based nanoelectrodes have been employed to create single-molecule transistors and phase change memory devices. In spite of the significant rec ent interest in their use in a range of nanoscale devices from phase change memories to molecular electronics, the operating and scaling limits of these electrodes are completely unknown. In this paper, we report on our observations of consistent voltage driven resistance switching in sub-5 nm graphene nanogaps. We find that we are able to reversibly cycle between a low and a high resistance state using feedback-controlled voltage ramps.We attribute this unexplained switching in the gap to the formation and breakdown of carbon filaments.By increasing the gap, we find that such intrinsic resistance switching of graphene nanogaps imposes a scaling limit of 10 nm (approx.) on the gap-size for devices with operating voltages of 1 to 2 volts.
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra nsistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular we show that, even for poorly contacting metals, properly taylored constrictions can give promising values for both the on-conductance and the subthreshold swing.
The nanofriction of Xe monolayers deposited on graphene was explored with a quartz crystal microbalance (QCM) at temperatures between 25 and 50 K. Graphene was grown by chemical vapor deposition and transferred to the QCM electrodes with a polymer st amp. At low temperatures, the Xe monolayers are fully pinned to the graphene surface. Above 30 K, the Xe film slides and the depinning onset coverage beyond which the film starts sliding decreases with temperature. Similar measurements repeated on bare gold show an enhanced slippage of the Xe films and a decrease of the depinning temperature below 25 K. Nanofriction measurements of krypton and nitrogen confirm this scenario.This thermolubric behavior is explained in terms of a recent theory of the size dependence of static friction between adsorbed islands and crystalline substrates.
Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrows electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene monolayer grown on a Pt(111) surface and investigated its impact in the electronic, structural and magnetic properties of the graphene layer. Our low temperature scanning tunneling microscopy studies, complemented by density functional theory, show the existence of a broad electronic resonance above the Fermi energy associated with the vacancies. Vacancy sites become reactive leading to an increase of the coupling between the graphene layer and the metal substrate at these points; this gives rise to a rapid decay of the localized state and the quenching of the magnetic moment associated with carbon vacancies in free-standing graphene layers.
We demonstrate molecular beam growth of graphene on biotite mica substrates at temperatures below 1000{deg}C. As indicated by optical and atomic force microscopy, evaporation of carbon from a high purity solid-state source onto biotite surface result s in the formation of single-, bi-, and multilayer graphene with size in the micrometer regime. Graphene grown directly on mica surface is of very high crystalline quality with the defect density below the threshold detectable by Raman spectroscopy. The interaction between graphene and the mica substrate is studied by comparison of the Raman spectroscopy and atomic force microscopy data with the corresponding results obtained for graphene flakes mechanically exfoliated onto biotite substrates. Experimental insights are combined with density functional theory calculations to propose a model for the initial stage of the van der Waals growth of graphene on mica surfaces. This work provides important hints on how the direct growth of high quality graphene on insulators can be realized in general without exceeding the thermal budget limitations of Si technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا