ﻻ يوجد ملخص باللغة العربية
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the current round and also in the first phase of the next round. We investigate the stealthy SK rate performance of the first phase. The derived results show that the SK capacity lower and upper bounds of the source-model SKG are not affected by the additional stealth constraint. This result implies that we can attain the SSKG capacity for free when the sequences observed by the three terminals Alice ($X^n$), Bob ($Y^n$) and Willie ($Z^n$) follow a Markov chain relationship, i.e., $X^n-Y^n-Z^n$. We then prove that the sufficient condition to attain both, the SK capacity as well as the SSK capacity, can be relaxed from physical to stochastic degradedness. In order to underline the practical relevance, we also derive a sufficient condition to attain the degradedness by the usual stochastic order for Maurers fast fading Gaussian (satellite) model for the source of common randomness.
It is well known that physical-layer Group Secret-Key (GSK) generation techniques allow multiple nodes of a wireless network to synthesize a common secret-key, which can be subsequently used to keep their group messages confidential. As one of its sa
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme
Physical-layer key generation (PKG) can generate symmetric keys between two communication ends based on the reciprocal uplink and downlink channels. By smartly reconfiguring the radio signal propagation, intelligent reflecting surface (IRS) is able t
Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secu
It is well known that physical-layer key generation methods enable wireless devices to harvest symmetric keys by accessing the randomness offered by the wireless channels. Although two-user key generation is well understood, group secret-key (GSK) ge