ﻻ يوجد ملخص باللغة العربية
Physical-layer key generation (PKG) can generate symmetric keys between two communication ends based on the reciprocal uplink and downlink channels. By smartly reconfiguring the radio signal propagation, intelligent reflecting surface (IRS) is able to improve the secret key rate of PKG. However, existing works involving IRS-assisted PKG are concentrated in single-antenna wireless networks. So this paper investigates the problem of PKG in the IRS-assisted multiple-input single-output (MISO) system, which aims to maximize the secret key rate by optimally designing the IRS passive beamforming. First, we analyze the correlation between channel state information (CSI) of eavesdropper and legitimate ends and derive the expression of the upper bound of secret key rate under passive eavesdropping attack. Then, an optimal algorithm for designing IRS reflecting coefficients based on Semi-Definite Relaxation (SDR) and Taylor expansion is proposed to maximize the secret key rate. Numerical results show that our optimal IRS-assisted PKG scheme can achieve much higher secret key rate when compared with two benchmark schemes.
We investigate transmission optimization for intelligent reflecting surface (IRS) assisted multi-antenna systems from the physical-layer security perspective. The design goal is to maximize the system secrecy rate subject to the source transmit power
Terahertz (THz) communications have emerged as a promising candidate to support the heavy data traffic and exploding network capacity in the future 6G wireless networks. However, THz communications are facing many challenges for practical implementat
In this paper, the minimum mean square error (MMSE) channel estimation for intelligent reflecting surface (IRS) assisted wireless communication systems is investigated. In the considered setting, each row vector of the equivalent channel matrix from
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the cu
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studie