ترغب بنشر مسار تعليمي؟ اضغط هنا

Group Secret-Key Generation using Algebraic Rings in Wireless Networks

92   0   0.0 ( 0 )
 نشر من قبل Jagadeesh Harshan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that physical-layer Group Secret-Key (GSK) generation techniques allow multiple nodes of a wireless network to synthesize a common secret-key, which can be subsequently used to keep their group messages confidential. As one of its salient features, the wireless nodes involved in physical-layer GSK generation extract randomness from a subset of their wireless channels, referred as the common source of randomness (CSR). Unlike two-user key generation, in GSK generation, some nodes must act as facilitators by broadcasting quantiz

قيم البحث

اقرأ أيضاً

Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secu re messages while broadcasting, relaying, and other network-level communications. While existing GSK protocols focus on securing the common source of randomness from external eavesdroppers, they assume that the legitimate nodes of the group are trusted. In this paper, we address insider attacks from the legitimate participants of the wireless network during the key generation process. Instead of addressing conspicuous attacks such as switching-off communication, injecting noise, or denying consensus on group keys, we introduce stealth attacks that can go undetected against state-of-the-art GSK schemes. We propose two forms of attacks, namely: (i) different-key attacks, wherein an insider attempts to generate different keys at different nodes, especially across nodes that are out of range so that they fail to recover group messages despite possessing the group key, and (ii) low-rate key attacks, wherein an insider alters the common source of randomness so as to reduce the key-rate. We also discuss various detection techniques, which are based on detecting anomalies and inconsistencies on the channel measurements at the legitimate nodes. Through simulations we show that GSK generation schemes are vulnerable to insider-threats, especially on topologies that cannot support additional secure links between neighbouring nodes to verify the attacks.
81 - Rohit Joshi , J. Harshan 2021
It is well known that physical-layer key generation methods enable wireless devices to harvest symmetric keys by accessing the randomness offered by the wireless channels. Although two-user key generation is well understood, group secret-key (GSK) ge neration, wherein more than two nodes in a network generate secret-keys, still poses open problems. Recently, Manish Rao et al., have proposed the Algebraic Symmetrically Quantized GSK (A-SQGSK) protocol for a network of three nodes wherein the nodes share quantiz
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the cu rrent round and also in the first phase of the next round. We investigate the stealthy SK rate performance of the first phase. The derived results show that the SK capacity lower and upper bounds of the source-model SKG are not affected by the additional stealth constraint. This result implies that we can attain the SSKG capacity for free when the sequences observed by the three terminals Alice ($X^n$), Bob ($Y^n$) and Willie ($Z^n$) follow a Markov chain relationship, i.e., $X^n-Y^n-Z^n$. We then prove that the sufficient condition to attain both, the SK capacity as well as the SSK capacity, can be relaxed from physical to stochastic degradedness. In order to underline the practical relevance, we also derive a sufficient condition to attain the degradedness by the usual stochastic order for Maurers fast fading Gaussian (satellite) model for the source of common randomness.
77 - You Chen , Guyue Li , Chen Sun 2020
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme with pilot reuse based on the beam domain channel model and derive close-form expression of secret key rate. Specifically, we present two algorithms, i.e., beam-domain based channel probing (BCP) algorithm and interference neutralization based multi-user beam allocation (IMBA) algorithm for the purpose of channel dimension reduction and multi-user pilot reuse, respectively. Numerical results verify that the proposed PKG scheme can achieve the secret key rate that approximates the perfect case, and significantly reduce the dimension of the channel estimation and pilot overhead.
Physical-layer key generation (PKG) based on channel reciprocity has recently emerged as a new technique to establish secret keys between devices. Most works focus on pairwise communication scenarios with single or small-scale antennas. However, the fifth generation (5G) wireless communications employ massive multiple-input multiple-output (MIMO) to support multiple users simultaneously, bringing serious overhead of reciprocal channel acquisition. This paper presents a multi-user secret key generation in massive MIMO wireless networks. We provide a beam domain channel model, in which different elements represent the channel gains from different transmit directions to different receive directions. Based on this channel model, we analyze the secret key rate and derive a closed-form expression under independent channel conditions. To maximize the sum secret key rate, we provide the optimal conditions for the Kronecker product of the precoding and receiving matrices and propose an algorithm to generate these matrices with pilot reuse. The proposed optimization design can significantly reduce the pilot overhead of the reciprocal channel state information acquisition. Furthermore, we analyze the security under the channel correlation between user terminals (UTs), and propose a low overhead multi-user secret key generation with non-overlapping beams between UTs. Simulation results demonstrate the near optimal performance of the proposed precoding and receiving matrices design and the advantages of the non-overlapping beam allocation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا