ﻻ يوجد ملخص باللغة العربية
Single electron transistors (SETs) fabricated from single-walled carbon nanotubes (SWNTs) can be operated as highly sensitive charge detectors reaching sensitivity levels comparable to metallic radio frequency SETs (rf-SETs). Here we demonstrate how the charge sensitivity of the device can be improved by using the mechanical oscillations of a single-walled carbon nanotube quantum dot. To optimize the charge sensitivity $delta Q$, we drive the mechanical resonator far into the nonlinear regime and bias it to an operating point where the mechanical third order nonlinearity is cancelled out. This way we enhance $delta Q$, from 6 $mu e/sqrt{textrm{Hz}}$ for the static case, to 0.97 $mu e/sqrt{textrm{Hz}}$, at a probe frequency of $sim$ 1.3 kHz.
A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonst
Electroluminescence from individual carbon nanotubes within split-gate devices is investigated. By characterizing the air-suspended nanotubes with photoluminescence spectroscopy, chirality is identified and electroluminescence peaks are assigned. We
Understanding the influence of vibrational motion of the atoms on electronic transitions in molecules constitutes a cornerstone of quantum physics, as epitomized by the Franck-Condon principle of spectroscopy. Recent advances in building molecular-el
Antenna-coupled suspended single carbon nanotubes exposed to 108 GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-de
A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-v