ﻻ يوجد ملخص باللغة العربية
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a new ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
Telescopes to be launched over the next decade-and-a-half, such as JWST, EUCLID, ATHENA and Lynx, promise to revolutionise the study of the high redshift Universe and greatly advance our understanding of the early stages of galaxy formation. We use a
The leading tensions to the collisionless cold dark matter (CDM) paradigm are the small-scale controversies, discrepancies between observations at the dwarf-galactic scale and their simulational counterparts. In this work we consider methods to infer
The James Webb Space Telescop (JWST) promises to revolutionise our understanding of the early Universe, and contrasting its upcoming observations with predictions of the $Lambda$CDM model requires detailed theoretical forecasts. Here, we exploit the
We derive lens distortion and magnification profiles of four well known clusters observed with Subaru. Each cluster is very well fitted by the general form predicted for Cold Dark Matter (CDM) dominated halos, with good consistency found between the
We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift $5<z<12$ galaxies through extensive image simulations of accepted JWST programs su