ﻻ يوجد ملخص باللغة العربية
We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift $5<z<12$ galaxies through extensive image simulations of accepted JWST programs such as CEERS in the EGS field and HUDF GTO. We introduce complete samples of $sim300,000$ galaxies with stellar masses $log(M_*/M_odot)>6$ and redshifts $0<z<15$, as well as galactic stars, into realistic mock NIRCam, MIRI and HST images to properly describe the impact of source blending. We extract the photometry of the detected sources as in real images and estimate the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star-formation rates are recovered within $0.25$ and $0.3$ dex respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the $z>5$ galaxy samples can be reduced to $<0.01$ arcmin$^{-2}$ with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find the best compromise between completeness and purity at $5<z<10$ using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than $50%$ for $m_text{UV}<27.5$ sources at all redshifts, and the purity is maintained above $80$ and $60%$ at $zleq7$ and $10$ respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of $0.1-0.25$, and the cosmic star-formation rate density within $0.1$ dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.
The JWST MIRI instrument will revolutionize extragalactic astronomy with unprecedented sensitivity and angular resolution in mid-IR. Here, we assess the potential of MIRI photometry to constrain galaxy properties in the Cosmic Evolution Early Release
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a ne
Since the IAU (maser-)Symposium 287 in Stellenbosch/South Africa (Jan. 2012), great progress has been achieved in studying extragalactic maser sources. Sensitivity has reached a level allowing for dedicated maser surveys of extragalactic objects. The
The James Webb Space Telescope (JWST) will enable the detection of optical emission lines in galaxies spanning a broad range of luminosities out to redshifts z>10. Measurements of key galaxy properties, such as star formation rate and metallicity, th
Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their red