ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing $Lambda$CDM With Dwarf Galaxy Morphology

269   0   0.0 ( 0 )
 نشر من قبل Weishuang Linda Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The leading tensions to the collisionless cold dark matter (CDM) paradigm are the small-scale controversies, discrepancies between observations at the dwarf-galactic scale and their simulational counterparts. In this work we consider methods to infer 3D morphological information on Local Group dwarf spheroidals, and test the fitness of CDM+hydrodynamics simulations to the observed galaxy shapes. We find that the subpopulation of dwarf galaxies with mass-to-light ratio $gtrsim 100 M_odot/L_odot$ reflects an oblate morphology. This is discrepant with the dwarf galaxies with mass-to-light ratio $lesssim 100 M_odot/L_odot$, which reflect prolate morphologies, and more importantly with simulations of CDM-sourced galaxies which are explicitly prolate. Although more simulations and data are called for, if evidence of oblate pressure-supported stellar distributions persists, we argue that an underlying oblate non-CDM dark matter halo may be required, and present this as motivation for future studies.

قيم البحث

اقرأ أيضاً

74 - Mauro Sereno 2018
The $Lambda$CDM model of structure formation makes strong predictions on concentration and shape of DM (dark matter) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric te st of the $Lambda$CDM model. Accurate and precise measurements needs a full three-dimensional analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular CLASH (Cluster Lensing And Supernova survey with Hubble) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev-Zeldovich effect. The cluster shapes and concentrations are consistent with $Lambda$CDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being not so effective in making halos rounder.
The standard disc formation scenario postulates that disc forms as the gas cools and flows into the centre of the dark matter halo, conserving the specific angular momentum. Major mergers have been shown to be able to destroy or highly perturb the di sc components. More recently, the alignment of the material that is accreted to form the galaxy has been pointed out as a key ingredient to determine galaxy morphology. However, in a hierarchical scenario galaxy formation is a complex process that combines these processes and others in a non-linear way so that the origin of galaxy morphology remains to be fully understood. We aim at exploring the differences in the formation histories of galaxies with a variety of morphology, but quite recent merger histories, to identify which mechanisms are playing a major role. We analyse when minor mergers can be considered relevant to determine galaxy morphology. We also study the specific angular momentum content of the disc and central spheroidal components separately. We used cosmological hydrodynamical simulations that include an effective, physically motivated supernova feedback that is able to regulate the star formation in haloes of different masses. We analysed the morphology and formation history of a sample of 15 galaxies of a cosmological simulation. We performed a spheroid-disc decomposition of the selected galaxies and their progenitor systems. The angular momentum orientation of the merging systems as well as their relative masses were estimated to analyse the role played by orientation and by minor mergers in the determination of the morphology. We found the discs to be formed by conserving the specific angular momentum in accordance with the classical disc formation model. The specific angular momentum of the stellar central spheroid correlates with the dark matter halo angular momentum and determines a power law. Abridged
90 - William Cowley 2017
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a ne w ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
87 - C.Y. Yaryura 2020
Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than thirty years ago. We study these systems in the cosmological framework of the $Lam bda$ Cold Dark Matter ($Lambda$CDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends of friends algorithm with a linking length equal to $b=0.4 ,{rm Mpc},h^{-1}$, to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one (or more) galaxies with stellar mass larger than a maximum threshold $M_{rm max}$. We analyse three different samples defined by ${rm log}_{10}(M_{rm max}[{rm M}_{odot},h^{-1}]) = 8.5, 9.0$ and $9.5$. On average, our systems have typical sizes of $sim 0.2,{rm Mpc},h^{-1}$, velocity dispersion of $sim 30 {rm km,s^{-1}} $ and estimated total mass of $sim 10^{11} {rm M}_{odot},h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the $Lambda$CDM model can naturally reproduce the existence and properties of dwarf galaxies associations without much difficulty.
The cosmological constant $Lambda$ and cold dark matter (CDM) model ($Lambdatext{CDM}$) is one of the pillars of modern cosmology and is widely used as the de facto theoretical model by current and forthcoming surveys. As the nature of dark energy is very elusive, in order to avoid the problem of model bias, here we present a novel null test at the perturbation level that uses the growth of matter perturbation data in order to assess the concordance model. We analyze how accurate this null test can be reconstructed by using data from forthcoming surveys creating mock catalogs based on $Lambdatext{CDM}$ and three models that display a different evolution of the matter perturbations, namely a dark energy model with constant equation of state $w$ ($w$CDM), the Hu & Sawicki and designer $f(R)$ models, and we reconstruct them with a machine learning technique known as the Genetic Algorithms. We show that with future LSST-like mock data our consistency test will be able to rule out these viable cosmological models at more than 5$sigma$, help to check for tensions in the data and alleviate the existing tension of the amplitude of matter fluctuations $S_8=sigma_8left(Omega_m/0.3right)^{0.5}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا