ﻻ يوجد ملخص باللغة العربية
There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying textit{in situ} in-plane strain and measuring their Fermi wavevector anisotropy through commensurability oscillations. For strains on the order of $10^{-4}$ we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field ($alpha_mathrm{CF}$) is less than the anisotropy of their low-field hole (fermion) counterparts ($alpha_mathrm{F}$), and closely follows the relation: $alpha_mathrm{CF} = sqrt{alpha_mathrm{F}}$. The energy gap measured for the $ u = 2/3$ FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to $alpha_mathrm{F} sim 3.3$, the highest anisotropy achieved in our experiments.
When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-
We demonstrate tuning of the Fermi contour anisotropy of two-dimensional (2D) holes in a symmetric GaAs (001) quantum well via the application of in-plane strain. The ballistic transport of high-mobility hole carriers allows us to measure the Fermi w
The fractional quantum Hall (FQH) effect was discovered in two-dimensional electron systems subject to a large perpendicular magnetic field nearly four decades ago. It helped launch the field of topological phases, and in addition, because of the que
The Hall viscosity has been proposed as a topological property of incompressible fractional quantum Hall states and can be evaluated as Berry curvature. This paper reports on the Hall viscosities of composite-fermion Fermi seas at $ u=1/m$, where $m$
We develop a phenomenological description of the nu=5/2 quantum Hall state in which the Halperin-Lee-Read theory of the half-filled Landau level is combined with a p-wave pairing interaction between composite fermions (CFs). The electromagnetic respo